cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144004 E.g.f. A(x) satisfies: A(x) = 1 + Series_Reversion( Integral 1/A(x)^4 dx ).

This page as a plain text file.
%I A144004 #8 Sep 07 2024 16:03:06
%S A144004 1,1,4,44,856,24664,958592,47463936,2881313024,208638075392,
%T A144004 17654019768320,1717961286944768,189836122499649536,
%U A144004 23574107397852049408,3261667682403085852672,499151625979680748978176
%N A144004 E.g.f. A(x) satisfies: A(x) = 1 + Series_Reversion( Integral 1/A(x)^4 dx ).
%F A144004 E.g.f. A(x) satisfies: A'(x) = A(A(x) - 1)^4. - _Paul D. Hanna_, Sep 07 2024
%e A144004 E.g.f.: A(x) = 1 + x + 4*x^2/2! + 44*x^3/3! + 856*x^4/4! + 24664*x^5/5! + 958592*x^6/6! + 47463936*x^7/7! + 2881313024*x^8/8! + ...
%o A144004 (PARI) {a(n) = my(A=1+x+x*O(x^n)); for(i=0,n, A = 1 + serreverse(intformal(1/A^4))); n!*polcoef(A,n)}
%o A144004 for(n=0,20,print1(a(n),", "))
%Y A144004 Cf. A001028, A144002, A144003.
%K A144004 nonn
%O A144004 0,3
%A A144004 _Paul D. Hanna_, Sep 07 2008