This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144011 #16 Sep 12 2015 11:00:20 %S A144011 1,1,2,10,72,704,8640,127968,2220288,44179200,991802880,24799656960, %T A144011 683533762560,20589288993792,672920058230784,23717386619136000, %U A144011 896730039462297600,36203980633475973120,1554541449858851143680 %N A144011 E.g.f. satisfies: A'(x) = 1/(1 - x*A(x))^2 with A(0)=1. %H A144011 Vaclav Kotesovec, <a href="/A144011/b144011.txt">Table of n, a(n) for n = 0..335</a> %H A144011 V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Asymptotic of implicit functions if Fww = 0</a> %F A144011 E.g.f. A(x) satisfies: A(x) = 1 + Integral 1/(1 - x*A(x))^2 dx. %F A144011 E.g.f. A(x) satisfies: x/(x*A(x)-1) = tan(1-A(x)). - _Vaclav Kotesovec_, Jun 15 2013 %F A144011 a(n) ~ GAMMA(1/3) * n^(n-5/6) * (2+Pi)^(n+1/3) / (3^(1/6) * sqrt(Pi) * exp(n) * 2^(n+5/6)). - _Vaclav Kotesovec_, Feb 23 2014 %t A144011 nn=10;Flatten[{1,Table[Subscript[c,j]*j!,{j,1,nn}]/.Solve[Table[SeriesCoefficient[x/(x*(1+Sum[Subscript[c,j]*x^j,{j,1,nn}])-1),{x,0,k}]==SeriesCoefficient[Tan[-Sum[Subscript[c,j]*x^j,{j,1,nn}]],{x,0,k}],{k,0,nn}]]}] (* _Vaclav Kotesovec_, Jun 15 2013 *) %o A144011 (PARI) {a(n)=local(A=1+x); for(i=0, n, A=1+intformal(1/(1-x*A+x*O(x^n))^2 )); n!*polcoeff(A, n)} %Y A144011 Cf. A144010, A238302. %K A144011 nonn,nice %O A144011 0,3 %A A144011 _Paul D. Hanna_, Sep 10 2008