A144029 Eigentriangle by rows, A055615(n-k+1)*A144028(k-1); 1<=k<=n.
1, -2, 1, -3, -2, -1, 0, -3, 2, -6, -5, 0, 3, 12, -7, 6, -5, 0, 18, 14, 3, -7, 6, 5, 0, 21, -6, 36, 0, -7, -6, 30, 0, -9, -72, 55, 0, 0, 7, -36, 35, 0, -108, -110, -9, 10, 0, 0, 42, -42, -15, 0, -165, 18, -221, -11, 10, 0, 0, 49, 18, -180, 0, 27, 442, -373, 0, -11, -10, 0, 0, -21, 216, -275, 0, 663, 746, -18
Offset: 1
Examples
First few rows of the triangle = 1; -2, 1; -3, -2, -1; 0, -3, 2, -6; -5, 0, 3, 12, -7; 6, -5, 0, 18, 14, 3; -7, 6, 5, 0, 21, -6, 36; 0, -7, -6, 30, 0, -9, -72, 55; 0, 0, 7, -36, 35, 0, -108, -110, -9; 10, 0, 0, 42, -42, -15, 0, -165, 18, -221; ... Row 4 = (0, -3, 2, -6) = termwise products of (0, -3, -2, 1) and (1, 1, -1, -6) = (0*1, -3*1, -2*-1, 1*(-6)). (0, -3, -2, 1) = the first 4 terms of A055615, n*mu(n), reversed. (1, 1, -1, 6) = the first 4 terms A144028, shifted.
Programs
Extensions
Entries corrected starting from row 10. - R. J. Mathar, Jan 27 2011
Comments