A144032 Triangle read by rows: T(n,k) = A002321(n-k+1)*A144031(k-1).
1, 0, 1, -1, 0, 1, -1, -1, 0, 0, -2, -1, -1, 0, -2, -1, -2, -1, 0, 0, -6, -2, -1, -2, 0, 2, 0, -10, -2, -2, -1, 0, 2, 6, 0, -13, -2, -2, -2, 0, 46, 10, 0, -10, -1, -2, -2, 0, 2, 12, 10, 13, 0, 4, -2, -1, -2, 0, 4, 6, 10, 13, 10, 0, 36, -2, -2, -1, 0, 4, 12, 10, 26, 10, -4, 0, 84, -3
Offset: 1
Examples
First few rows of the triangle: 1; 0, 1; -1, 0, 1; -1, -1, 0, 0; -2, -1, -1, 0, -2; -1, -2, -1, 0, 0, -6; -2, -1, -2, 0, 2, 0, -10; -2, -2, -1, 0, 2, 6, 0, -13; -2, -2, -2, 0, 4, 6, 10, 0, -10; ... Row 5 = (-2, -1, -1, 0, -2) termwise products of (-2, -1, -1, 0, 1) and (1, 1, 1, 0, -2); = ((-2)*(1), (-1)*(1), (-1)*(1), (0)*(0), (1)*(-2)). (-2, -1, -1, 0, 1) = the first 5 terms of A002321, the Mertens's function. (1, 1, 1, 0, -2) = 5 shifted terms of A144031.
Comments