cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144037 Shifts left when Euler transform applied 5 times.

This page as a plain text file.
%I A144037 #14 Jun 24 2018 19:21:47
%S A144037 0,1,1,6,26,141,751,4337,25512,154839,956877,6014098,38292603,
%T A144037 246550449,1602304287,10497348917,69253008919,459673679526,
%U A144037 3067621127220,20570132531365,138528107124822,936524246563021,6353624897677005,43242243814689566,295161330408772329
%N A144037 Shifts left when Euler transform applied 5 times.
%H A144037 Alois P. Heinz, <a href="/A144037/b144037.txt">Table of n, a(n) for n = 0..400</a>
%H A144037 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%p A144037 k:=5: with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:='a': b[1]:=etr(a): for t from 2 to k do b[t]:= etr(b[t-1]) od: a:= n-> `if`(n<2,n,b[k](n-1)): seq(a(n), n=0..30);
%t A144037 etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; A[n_, k_] := Module[{a, b, t}, b[1] = etr[a]; For[ t = 2, t <= k, t++, b[t] = etr[b[t-1]]]; a = Function[m, If[m == 1, 1, b[k][m - 1]]]; a[n]]; Table[A[n, 5], {n, 0, 30} ] (* _Jean-François Alcover_, Mar 05 2015, after _Alois P. Heinz_ *)
%Y A144037 5th column of A144042.
%Y A144037 Cf. A316105.
%K A144037 eigen,nonn
%O A144037 0,4
%A A144037 _Alois P. Heinz_, Sep 07 2008