This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144060 #26 Aug 08 2025 03:54:01 %S A144060 1,0,1,0,2,2,8,8,34,60,203,553,2063,7359,30811,127416,541644,2235677, %T A144060 8966371,34413747,126465849,443858877,1490702752,4796609651, %U A144060 14821521743,44071296447,126388352322,350298687803,940211047828,2448320130626,6196158876181 %N A144060 Expansion of Molien series for the ring of genus 5 code polynomials for Type II codes. %H A144060 Ray Chandler, <a href="/A144060/b144060.txt">Table of n, a(n) for n = 0..2000</a> %H A144060 Ray Chandler, <a href="/A144060/a144060.txt">Mathematica program</a> %H A144060 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006. %H A144060 M. Oura, <a href="http://projecteuclid.org/euclid.ojm/1200787332">The dimension formula for the ring of code polynomials in genus 4</a>, Osaka J. Math. 34 (1997), 53-72. %H A144060 M. Oura, <a href="http://web.archive.org/web/20070102035724/http://www.math.kochi-u.ac.jp/oura/molienH5">The dimension formula of the invariant ring of H5</a> (web archive). %H A144060 <a href="/index/Rec#order_532">Index entries for linear recurrences with constant coefficients</a>, order 532. %F A144060 Oura (see link) gives the Molien series explicitly. %e A144060 1 + x^8 + 2*x^16 + 2*x^20 + 8*x^24 + 8*x^28 + 34*x^32 + 60*x^36 + 203*x^40 + 553*x^44 + 2063*x^48 + 7359*x^52 + 30811*x^56 + 127416*x^60 + 541644*x^64 + 2235677*x^68 + 8966371*x^72 + 34413747*x^76 + 126465849*x^80 + 443858877*x^84 + 1490702752*x^88 + 4796609651*x^92 + 14821521743*x^96 + ..... %t A144060 (* See link for Mathematica program. *) %Y A144060 Cf. A027672, A051354. %K A144060 nonn %O A144060 0,5 %A A144060 _N. J. A. Sloane_, Dec 22 2008, following a suggestion from G. Nebe %E A144060 More terms from _Ray Chandler_, Mar 23 2017