This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144067 #30 Sep 08 2022 08:45:38 %S A144067 1,3,15,64,276,1137,4648,18585,73494,286834,1108470,4243128,16111333, %T A144067 60718488,227302086,845689753,3128786415,11515509603,42179651417, %U A144067 153808740042,558532554942,2020325112767,7281212274165,26151068072301,93618849857345,334119804933861 %N A144067 Euler transform of powers of 3. %H A144067 Alois P. Heinz, <a href="/A144067/b144067.txt">Table of n, a(n) for n = 0..1000</a> %H A144067 Vaclav Kotesovec, <a href="https://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 27. %H A144067 N. J. A. Sloane, <a href="/transforms.txt"> Transforms</a> %F A144067 G.f.: Product_{j>0} 1/(1-x^j)^(3^j). %F A144067 a(n) ~ 3^n * exp(2*sqrt(n) - 1/2 + c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} 1/(m*(3^(m-1)-1)) = 0.3047484092142751906436952201501007636114175... . - _Vaclav Kotesovec_, Mar 14 2015 %F A144067 G.f.: exp(3*Sum_{k>=1} x^k/(k*(1 - 3*x^k))). - _Ilya Gutkovskiy_, Nov 09 2018 %p A144067 with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->3^j)(n): seq(a(n), n=0..40); %t A144067 etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a[n_] := etr[Function[3^#]][n]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Mar 09 2015, after _Alois P. Heinz_ *) %t A144067 CoefficientList[Series[Product[1/(1-x^k)^(3^k), {k, 1, 30}], {x, 0, 30}], x] (* _G. C. Greubel_, Nov 09 2018 *) %o A144067 (PARI) m=30; x='x+O('x^m); Vec(prod(k=1,m,1/(1-x^k)^(3^k))) \\ _G. C. Greubel_, Nov 09 2018 %o A144067 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(3^k): k in [1..m]]) )); // _G. C. Greubel_, Nov 09 2018 %Y A144067 3rd column of A144074. Row sums of A275414. %Y A144067 Cf. A256142. %K A144067 nonn %O A144067 0,2 %A A144067 _Alois P. Heinz_, Sep 09 2008