cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144078 a(n) = the number of digits in the binary representation of n that differ from the corresponding digit in the binary reversal of n. (I.e., a(n) = number of 1's in n XOR A030101(n).)

Original entry on oeis.org

0, 2, 0, 2, 0, 2, 0, 2, 0, 4, 2, 4, 2, 2, 0, 2, 0, 4, 2, 2, 0, 4, 2, 4, 2, 2, 0, 4, 2, 2, 0, 2, 0, 4, 2, 4, 2, 6, 4, 4, 2, 6, 4, 2, 0, 4, 2, 4, 2, 2, 0, 6, 4, 4, 2, 6, 4, 4, 2, 4, 2, 2, 0, 2, 0, 4, 2, 4, 2, 6, 4, 2, 0, 4, 2, 4, 2, 6, 4, 4, 2, 6, 4, 2, 0, 4, 2, 4, 2, 6, 4, 2, 0, 4, 2, 4, 2, 2, 0, 6, 4, 4, 2, 4, 2
Offset: 1

Views

Author

Leroy Quet, Sep 09 2008

Keywords

Comments

a(n) + A144079(n) = A070939(n), the number of binary digits in n.

Examples

			20 in binary is 10100. Compare this with its digit reversal, 00101. XOR each pair of corresponding digits: 1 XOR 0 = 1, 0 XOR 0 = 0, 1 XOR 1 = 0, 0 XOR 0 = 0, 0 XOR 1 = 1. There are two bit pairs that differ, so a(20) = 2.
		

Crossrefs

Programs

  • Maple
    A144078 := proc(n) local a,dgs,i; a := 0 ; dgs := convert(n,base,2) ; for i from 1 to nops(dgs) do if op(i,dgs)+op(-i,dgs) = 1 then a := a+1 ; fi; od; RETURN(a) ; end: for n from 1 to 240 do printf("%d,",A144078(n)) ; od: # R. J. Mathar, Sep 14 2008
  • Mathematica
    brd[n_]:=Module[{idn2=IntegerDigits[n,2]},Count[Transpose[{idn2, Reverse[ idn2]}], ?(#[[1]]!=#[[2]]&)]]; Array[brd,110] (* _Harvey P. Dale, May 09 2016 *)
  • PARI
    a(n) = hammingweight(bitxor(n, fromdigits(Vecrev(binary(n)),2))) \\ Rémy Sigrist, Oct 07 2018

Formula

From Rémy Sigrist, Oct 07 2018: (Start)
a(n) = 0 iff n is a binary palindrome (A006995).
a(A143960(n)) = 2*n (in fact A143960(n) is the least k such that a(k) = 2*n).
(End)

Extensions

More terms from R. J. Mathar, Sep 14 2008