This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144089 #35 Feb 16 2025 08:33:08 %S A144089 1,1,0,1,2,1,1,6,9,2,1,12,42,44,9,1,20,130,320,265,44,1,30,315,1420, %T A144089 2715,1854,265,1,42,651,4690,16275,25494,14833,1854,1,56,1204,12712, %U A144089 70070,198184,263284,133496,14833,1,72,2052,29904,240534,1076544,2573508 %N A144089 T(n,k) is the number of partial bijections (or subpermutations) of an n-element set of height k (height(alpha) = |Im(alpha)|) and without fixed points. %C A144089 Rows also give coefficients of the matching-generating polynomial of the n-crown graph. - _Eric W. Weisstein_ May 19 2017 %H A144089 A. Laradji and A. Umar, <a href="http://dx.doi.org/10.1007/s00233-007-0732-8">Combinatorial results for the symmetric inverse semigroup</a>, Semigroup Forum 75, (2007), 221-236. %H A144089 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CrownGraph.html">Crown Graph</a> %H A144089 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Matching-GeneratingPolynomial.html">Matching-Generating Polynomial</a> %F A144089 T(n,k) = (n!/(n-k)!)*Sum_{m=0..k}(-1^m/m!)*binomial(n-m,k-m). %F A144089 T(n,n-1) = A000166(n+1) and T(n,n) = A000166(n). %F A144089 E.g.f.: exp(log(1/(1-y*x))-y*x)*exp(x/(1 - y*x)). - _Geoffrey Critzer_, Feb 18 2022 %e A144089 T(3,2) = 9 because there are exactly 9 partial bijections (on a 3-element set) without fixed points and of height 2, namely: (1,2)->(2,1), (1,2)->(2,3), (1,2)->(3,1), (1,3)->(2,1), (1,3)->(3,1), (1,3)->(3,2), (2,3)->(1,2), (2,3)->(3,1), (2,3)->(3,2),- the mappings are coordinate-wise. %e A144089 Triangle starts: %e A144089 1; %e A144089 1, 0; %e A144089 1, 2, 1; %e A144089 1, 6, 9, 2; %e A144089 1, 12, 42, 44, 9; %e A144089 1, 20, 130, 320, 265, 44; %t A144089 t[n_, k_] := n!^2*Hypergeometric1F1[-k, -n, -1]/(k!*(n-k)!^2); Flatten[ Table[ t[n, k], {n, 0, 7}, {k, 0, n}]] (* _Jean-François Alcover_, Oct 13 2011 *) %t A144089 CoefficientList[Table[x^n n! Sum[(-1)^k/k! LaguerreL[n - k, -1/x], {k, 0, n}], {n, 2, 10}], x] // Flatten (* _Eric W. Weisstein_, May 19 2017 *) %o A144089 (Sage) %o A144089 def A144089_triangle(dim): # computes rows in reversed order %o A144089 M = matrix(ZZ,dim,dim) %o A144089 for n in (0..dim-1): M[n,n] = 1 %o A144089 for n in (1..dim-1): %o A144089 for k in (0..n-1): %o A144089 M[n,k] = M[n-1,k-1]+(2*k)*M[n-1,k]+(k+1)^2*M[n-1,k+1] %o A144089 return M %o A144089 A144089_triangle(9) # _Peter Luschny_, Sep 19 2012 %Y A144089 Row sums give A144085. %Y A144089 Cf. A000166. %K A144089 nice,nonn,tabl %O A144089 0,5 %A A144089 _Abdullahi Umar_, Sep 11 2008