cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144105 Primes at the upper end of the gaps mentioned in A144104.

This page as a plain text file.
%I A144105 #21 Mar 18 2018 04:01:40
%S A144105 3,5,11,17,29,37,53,59,127,149,211,223,307,331,541,1361,1693,1973,
%T A144105 2203,2503,2999,3299,4327,4861,5623,5779,5981,6521,6947,7283,8501,
%U A144105 9587,10007,10831,11777,12197,12889,15727,16183,19661,31469,34123,35671,35729
%N A144105 Primes at the upper end of the gaps mentioned in A144104.
%C A144105 Firoozbakht conjecture: (prime(n+1))^(1/(n+1)) < prime(n)^(1/n), or
%C A144105 prime(n+1) < prime(n)^(1+1/n), which can be rewritten as: (log(prime(n+1))/log(prime(n)))^n < (1+1/n)^n. This suggests a weaker conjecture: (log(prime(n+1))/log(prime(n)))^n < e. - _Daniel Forgues_, Apr 28 2014
%H A144105 T. D. Noe, <a href="/A144105/b144105.txt">Table of n, a(n) for n = 1..176</a>
%H A144105 A. Kourbatov, <a href="http://arxiv.org/abs/1503.01744">Verification of the Firoozbakht conjecture for primes up to four quintillion</a>, arXiv:1503.01744 [math.NT], 2015.
%H A144105 Nilotpal Kanti Sinha, <a href="http://arxiv.org/abs/1010.1399">On a new property of primes that leads to a generalization of Cramer's conjecture</a>, arXiv:1010.1399 [math.NT], 2010.
%H A144105 Wikipedia, <a href="http://en.wikipedia.org/wiki/Firoozbakht%E2%80%99s_conjecture">Firoozbakht's conjecture</a>
%e A144105 Examples for (log(prime(n+1))/log(prime(n)))^n < (1+1/n)^n < e:
%e A144105 (log(3)/log(2))^1 = 1.58... < (1+1/1)^1 = 2 < e;
%e A144105 (log(1361)/log(1327))^217 = 2.14... < (1+1/217)^217 = 2.712... < e;
%e A144105 (log(8501)/log(8467))^1059 = 1.59... < (1+1/1059)^1059 = 2.716... < e;
%e A144105 (log(35729)/log(35677))^3795 = 1.69... < (1+1/3795)^3795 = 2.717... < e.
%e A144105 - _Daniel Forgues_, Apr 28 2014
%K A144105 nonn
%O A144105 1,1
%A A144105 _T. D. Noe_, Sep 11 2008