cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144115 Total number of Fibonacci parts in all partitions of n.

This page as a plain text file.
%I A144115 #33 Aug 07 2019 15:32:33
%S A144115 1,3,6,11,19,32,49,77,114,169,241,345,480,667,910,1237,1656,2213,2918,
%T A144115 3840,5003,6497,8368,10751,13711,17441,22052,27806,34879,43645,54355,
%U A144115 67535,83571,103171,126907,155766,190554,232629,283158,343969,416716,503900,607807
%N A144115 Total number of Fibonacci parts in all partitions of n.
%C A144115 a(n) is also the sum of the differences between the sum of f-th largest and the sum of (f+1)-st largest elements in all partitions of n for all Fibonacci parts f. - _Omar E. Pol_, Oct 27 2012
%H A144115 Alois P. Heinz, <a href="/A144115/b144115.txt">Table of n, a(n) for n = 1..8000</a>
%F A144115 G.f.: Sum_{i>=2} x^Fibonacci(i)/(1 - x^Fibonacci(i)) / Product_{j>=1} (1 - x^j). - _Ilya Gutkovskiy_, Jan 24 2017
%e A144115 From _Omar E. Pol_, Nov 20 2011 (Start):
%e A144115 For n = 6 we have:
%e A144115 --------------------------------------
%e A144115 .                        Number of
%e A144115 Partitions            Fibonacci parts
%e A144115 --------------------------------------
%e A144115 6 .......................... 0
%e A144115 3 + 3 ...................... 2
%e A144115 4 + 2 ...................... 1
%e A144115 2 + 2 + 2 .................. 3
%e A144115 5 + 1 ...................... 2
%e A144115 3 + 2 + 1 .................. 3
%e A144115 4 + 1 + 1 .................. 2
%e A144115 2 + 2 + 1 + 1 .............. 4
%e A144115 3 + 1 + 1 + 1 .............. 4
%e A144115 2 + 1 + 1 + 1 + 1 .......... 5
%e A144115 1 + 1 + 1 + 1 + 1 + 1 ...... 6
%e A144115 ------------------------------------
%e A144115 Total ..................... 32
%e A144115 So a(6) = 32. (End)
%p A144115 b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
%p A144115       b(n, i-1)+ (p-> p+`if`((t-> issqr(t+4) or issqr(t-4)
%p A144115       )(5*i^2), [0, p[1]], 0))(b(n-i, min(n-i, i)))))
%p A144115     end:
%p A144115 a:= n-> b(n$2)[2]:
%p A144115 seq(a(n), n=1..60); # _Alois P. Heinz_, Jun 24 2009, revised Aug 06 2019
%t A144115 Clear[b]; b[_] = False; l = {0, 1}; For[k=1, k <= 100, k++, b[l[[1]]] = True; l = {l[[2]], l[[1]] + l[[2]]}]; aa[n_, i_] := aa[n, i] = Module[{g, h}, If[n==0, {1, 0}, If[i==0 || n<0, {0, 0}, g = aa[n, i-1]; h = aa[n-i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + If[b[i], h[[1]], 0]}]]]; a[n_] := aa[n, n][[2]]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Jul 30 2015, after _Alois P. Heinz_ *)
%Y A144115 Cf. A000045, A006128, A037032, A144116, A144117, A144118, A199936, A309537.
%K A144115 nonn
%O A144115 1,2
%A A144115 _Omar E. Pol_, Sep 11 2008
%E A144115 More terms from _Alois P. Heinz_, Jun 24 2009