This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144115 #33 Aug 07 2019 15:32:33 %S A144115 1,3,6,11,19,32,49,77,114,169,241,345,480,667,910,1237,1656,2213,2918, %T A144115 3840,5003,6497,8368,10751,13711,17441,22052,27806,34879,43645,54355, %U A144115 67535,83571,103171,126907,155766,190554,232629,283158,343969,416716,503900,607807 %N A144115 Total number of Fibonacci parts in all partitions of n. %C A144115 a(n) is also the sum of the differences between the sum of f-th largest and the sum of (f+1)-st largest elements in all partitions of n for all Fibonacci parts f. - _Omar E. Pol_, Oct 27 2012 %H A144115 Alois P. Heinz, <a href="/A144115/b144115.txt">Table of n, a(n) for n = 1..8000</a> %F A144115 G.f.: Sum_{i>=2} x^Fibonacci(i)/(1 - x^Fibonacci(i)) / Product_{j>=1} (1 - x^j). - _Ilya Gutkovskiy_, Jan 24 2017 %e A144115 From _Omar E. Pol_, Nov 20 2011 (Start): %e A144115 For n = 6 we have: %e A144115 -------------------------------------- %e A144115 . Number of %e A144115 Partitions Fibonacci parts %e A144115 -------------------------------------- %e A144115 6 .......................... 0 %e A144115 3 + 3 ...................... 2 %e A144115 4 + 2 ...................... 1 %e A144115 2 + 2 + 2 .................. 3 %e A144115 5 + 1 ...................... 2 %e A144115 3 + 2 + 1 .................. 3 %e A144115 4 + 1 + 1 .................. 2 %e A144115 2 + 2 + 1 + 1 .............. 4 %e A144115 3 + 1 + 1 + 1 .............. 4 %e A144115 2 + 1 + 1 + 1 + 1 .......... 5 %e A144115 1 + 1 + 1 + 1 + 1 + 1 ...... 6 %e A144115 ------------------------------------ %e A144115 Total ..................... 32 %e A144115 So a(6) = 32. (End) %p A144115 b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, %p A144115 b(n, i-1)+ (p-> p+`if`((t-> issqr(t+4) or issqr(t-4) %p A144115 )(5*i^2), [0, p[1]], 0))(b(n-i, min(n-i, i))))) %p A144115 end: %p A144115 a:= n-> b(n$2)[2]: %p A144115 seq(a(n), n=1..60); # _Alois P. Heinz_, Jun 24 2009, revised Aug 06 2019 %t A144115 Clear[b]; b[_] = False; l = {0, 1}; For[k=1, k <= 100, k++, b[l[[1]]] = True; l = {l[[2]], l[[1]] + l[[2]]}]; aa[n_, i_] := aa[n, i] = Module[{g, h}, If[n==0, {1, 0}, If[i==0 || n<0, {0, 0}, g = aa[n, i-1]; h = aa[n-i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + If[b[i], h[[1]], 0]}]]]; a[n_] := aa[n, n][[2]]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Jul 30 2015, after _Alois P. Heinz_ *) %Y A144115 Cf. A000045, A006128, A037032, A144116, A144117, A144118, A199936, A309537. %K A144115 nonn %O A144115 1,2 %A A144115 _Omar E. Pol_, Sep 11 2008 %E A144115 More terms from _Alois P. Heinz_, Jun 24 2009