cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144117 Number of Fibonacci parts in the last section of the set of partitions of n.

This page as a plain text file.
%I A144117 #14 Aug 06 2015 07:46:30
%S A144117 1,2,3,5,8,13,17,28,37,55,72,104,135,187,243,327,419,557,705,922,1163,
%T A144117 1494,1871,2383,2960,3730,4611,5754,7073,8766,10710,13180,16036,19600,
%U A144117 23736,28859,34788,42075,50529,60811,72747,87184,103907,124019,147330
%N A144117 Number of Fibonacci parts in the last section of the set of partitions of n.
%C A144117 First differences of A144115.
%C A144117 Also number of Fibonacci parts in the n-th section of the set of partitions of any positive integer >= n. - _Omar E. Pol_, Jul 30 2015
%H A144117 Alois P. Heinz, <a href="/A144117/b144117.txt">Table of n, a(n) for n = 1..1000</a>
%F A144117 a(n) = A144115(n) - A144115(n-1).
%p A144117 b:= proc(n) option remember; false end: l:= [0, 1]: for k to 100 do b(l[1]):= true; l:= [l[2], l[1]+l[2]] od: aa:= proc(n, i) option remember; local g, h; if n=0 then [1, 0] elif i=0 or n<0 then [0, 0] else g:= aa(n, i-1); h:= aa(n-i, i); [g[1]+h[1], g[2]+h[2] +`if`(b(i), h[1], 0)] fi end: a:= n-> aa(n, n)[2] -aa(n-1, n-1)[2]: seq(a(n), n=1..60); # _Alois P. Heinz_, Jul 28 2009
%t A144117 Clear[b]; b[_] = False; l = {0, 1}; For[k = 1, k <= 100, k++, b[l[[1]]] = True; l = {l[[2]], l[[1]] + l[[2]]}]; aa[n_, i_] := aa[n, i] = Module[{g, h}, If[n == 0, {1, 0}, If[i == 0 || n < 0, {0, 0}, g = aa[n, i - 1]; h = aa[n - i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + If[b[i], h[[1]], 0]}]]] ; a[n_] := aa[n, n][[2]] - aa[n - 1, n - 1][[2]]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Jul 30 2015, after _Alois P. Heinz_ *)
%Y A144117 Cf. A000045, A135010, A138121, A138137, A144115, A144116, A144118, A144120.
%K A144117 nonn
%O A144117 1,2
%A A144117 _Omar E. Pol_, Sep 11 2008
%E A144117 More terms from _Alois P. Heinz_, Jul 28 2009