cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144119 Total number of nonprime parts in all partitions of n.

This page as a plain text file.
%I A144119 #18 Oct 29 2015 08:04:42
%S A144119 1,2,4,8,13,22,34,54,80,119,170,246,342,478,653,894,1198,1610,2127,
%T A144119 2813,3672,4789,6181,7975,10192,13010,16488,20861,26224,32918,41086,
%U A144119 51199,63494,78599,96888,119235,146167,178879,218181,265662,322487,390834,472343
%N A144119 Total number of nonprime parts in all partitions of n.
%C A144119 a(n) is also the sum of the differences between the sum of m-th largest and the sum of (m+1)st largest elements in all partitions of n for all nonprimes m. - _Omar E. Pol_, Oct 27 2012
%H A144119 Alois P. Heinz, <a href="/A144119/b144119.txt">Table of n, a(n) for n = 1..1000</a>
%F A144119 a(n) = A006128(n)-A037032(n).
%e A144119 From _Omar E. Pol_, Nov 20 2011 (Start):
%e A144119 For n = 6 we have:
%e A144119 --------------------------------------
%e A144119 .                        Number of
%e A144119 Partitions            nonprime parts
%e A144119 --------------------------------------
%e A144119 6 .......................... 1
%e A144119 3 + 3 ...................... 0
%e A144119 4 + 2 ...................... 1
%e A144119 2 + 2 + 2 .................. 0
%e A144119 5 + 1 ...................... 1
%e A144119 3 + 2 + 1 .................. 1
%e A144119 4 + 1 + 1 .................. 3
%e A144119 2 + 2 + 1 + 1 .............. 2
%e A144119 3 + 1 + 1 + 1 .............. 3
%e A144119 2 + 1 + 1 + 1 + 1 .......... 4
%e A144119 1 + 1 + 1 + 1 + 1 + 1 ...... 6
%e A144119 ------------------------------------
%e A144119 Total ..................... 22
%e A144119 So a(6) = 22. (End)
%p A144119 b:= proc(n, i) option remember; local g;
%p A144119       if n=0 then [1, 0]
%p A144119     elif i<1 then [0, 0]
%p A144119     else g:= `if`(i>n, [0$2], b(n-i, i));
%p A144119          b(n, i-1) +g +[0, `if`(isprime(i), 0, g[1])]
%p A144119       fi
%p A144119     end:
%p A144119 a:= n-> b(n, n)[2]:
%p A144119 seq(a(n), n=1..100);  # _Alois P. Heinz_, Oct 27 2012
%t A144119 b[n_, i_] := b[n, i] = Module[{g}, If[n == 0, {1, 0}, If[i<1, {0, 0}, g = If[i>n, {0, 0}, b[n-i, i]]; b[n, i-1] + g + {0, If[PrimeQ[i], 0, g[[1]]]} ]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Oct 29 2015, after _Alois P. Heinz_ *)
%o A144119 (PARI) vector(100, n, sum(k=1, n, (numdiv(k)-omega(k))*numbpart(n-k))) \\ _Altug Alkan_, Oct 29 2015
%Y A144119 Cf. A006128, A018252, A037032, A144116, A144121.
%K A144119 easy,nonn
%O A144119 1,2
%A A144119 _Omar E. Pol_, Sep 11 2008