This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144141 #20 Sep 08 2022 08:45:38 %S A144141 1,4,14,40,76,-16,-824,-3104,-880,46144,200416,-121216,-4894016, %T A144141 -16666880,60576896,708980224,1018614016,-18612911104,-109084520960, %U A144141 233726715904,5080118660096,10971406004224,-169479359707136,-1160659303014400,3153413334470656 %N A144141 a(n) = Hermite(n,2). %H A144141 G. C. Greubel, <a href="/A144141/b144141.txt">Table of n, a(n) for n = 0..729</a> %F A144141 From _G. C. Greubel_, Jul 10 2018: (Start) %F A144141 E.g.f.: exp(4*x - x^2). %F A144141 a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*4^(n-2*k)/(k!*(n-2*k)!). (End) %t A144141 lst={};Do[AppendTo[lst,HermiteH[n,2]],{n,0,7^2}];lst %t A144141 HermiteH[Range[0,30],2] (* _Harvey P. Dale_, May 20 2012 *) %o A144141 (PARI) for(n=0, 50, print1(polhermite(n, 2), ", " )) \\ _G. C. Greubel_, Jul 10 2018 %o A144141 (Magma) [(&+[(-1)^k*Factorial(n)*(4)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]]): n in [0..30]]; // _G. C. Greubel_, Jul 10 2018 %Y A144141 Cf. A000898, A000321, A062267. %K A144141 sign %O A144141 0,2 %A A144141 _Vladimir Joseph Stephan Orlovsky_, Sep 11 2008