This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144151 #32 May 25 2023 08:55:34 %S A144151 1,1,1,1,2,1,1,3,3,1,1,4,6,4,3,1,5,10,10,15,12,1,6,15,20,45,72,60,1,7, %T A144151 21,35,105,252,420,360,1,8,28,56,210,672,1680,2880,2520,1,9,36,84,378, %U A144151 1512,5040,12960,22680,20160,1,10,45,120,630,3024,12600,43200,113400,201600,181440 %N A144151 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) = number of ways an undirected cycle of length k can be built from n labeled nodes. %H A144151 Alois P. Heinz, <a href="/A144151/b144151.txt">Rows n = 0..140, flattened</a> %F A144151 T(n,k) = C(n,k) if k<=2, else T(n,k) = C(n,k)*(k-1)!/2. %F A144151 E.g.f.: exp(x)*(log(1/(1 - y*x))/2 + 1 + y*x/2 + (y*x)^2/4). - _Geoffrey Critzer_, Jul 22 2016 %e A144151 T(4,3) = 4, because 4 undirected cycles of length 3 can be built from 4 labeled nodes: %e A144151 .1.2. .1.2. .1-2. .1-2. %e A144151 ../|. .|\.. ..\|. .|/.. %e A144151 .3-4. .3-4. .3.4. .3.4. %e A144151 Triangle begins: %e A144151 1; %e A144151 1, 1; %e A144151 1, 2, 1; %e A144151 1, 3, 3, 1; %e A144151 1, 4, 6, 4, 3; %e A144151 1, 5, 10, 10, 15, 12; %e A144151 ... %p A144151 T:= (n,k)-> if k<=2 then binomial(n,k) else mul(n-j, j=0..k-1)/k/2 fi: %p A144151 seq(seq(T(n,k), k=0..n), n=0..12); %t A144151 t[n_, k_ /; k <= 2] := Binomial[n, k]; t[n_, k_] := Binomial[n, k]*(k-1)!/2; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Dec 18 2013 *) %t A144151 CoefficientList[Table[1 + n x (2 + (n - 1) x + 2 HypergeometricPFQ[{1, 1, 1 - n}, {2}, -x])/4, {n, 0, 10}], x] (* _Eric W. Weisstein_, Apr 06 2017 *) %Y A144151 Columns 0-4 give: A000012, A000027, A000217, A000292, A050534. %Y A144151 Diagonal gives: A001710. %Y A144151 Cf. A000142, A007318. %Y A144151 Row sums are in A116723. - _Alois P. Heinz_, Jun 01 2009 %Y A144151 Excluding columns k=0,1,and 2 the row sums are A002807. - _Geoffrey Critzer_, Jul 22 2016 %Y A144151 Cf. A284947 (k-cycle counts for k >= 3 in the complete graph K_n). - _Eric W. Weisstein_, Apr 06 2017 %Y A144151 T(2n,n) gives A006963(n+1) for n>=3. %K A144151 nonn,tabl %O A144151 0,5 %A A144151 _Alois P. Heinz_, Sep 12 2008