This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144186 #19 Feb 16 2025 08:33:09 %S A144186 1,1,1,5,7,7,11,143,143,2431,4199,4199,7429,7429,7429,215441,392863, %T A144186 392863,20677,765049,765049,31367009,58642669,58642669,2756205443, %U A144186 2756205443,2756205443,146078888479,5037203051,5037203051,9586934839 %N A144186 Numerators of series expansion of the e.g.f. for the Catalan numbers. %H A144186 G. C. Greubel, <a href="/A144186/b144186.txt">Table of n, a(n) for n = 0..1000</a> %H A144186 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CatalanNumber.html">Catalan Number</a> %F A144186 The e.g.f. is Sum_{n >= 0} (x^n/n!)*binomial(2n,n)/(n+1). %F A144186 E.g.f.: exp(2*x)*(BesselI(0, 2*x) - BesselI(1, 2*x)). %e A144186 E.g.f. = 1 + x + x^2 + (5*x^3)/6 + (7*x^4)/12 + ... %e A144186 The coefficients continue like this: 1, 1, 1, 5/6, 7/12, 7/20, 11/60, 143/1680, 143/4032, 2431/181440, 4199/907200, 4199/2851200, 7429/17107200, 7429/62270208, ... %p A144186 seq(numer(binomial(2*n,n)/(n+1)!),n=0..30); # _Vladeta Jovovic_, Dec 03 2008 %t A144186 With[{m = 30}, CoefficientList[Series[E^(2*x)*(BesselI[0, 2*x] - BesselI[1, 2*x]), {x, 0, m}], x]]//Numerator (* _G. C. Greubel_, Jan 17 2019 *) %o A144186 (PARI) vector(30, n, n--; numerator(binomial(2*n,n)/(n+1)!)) \\ _G. C. Greubel_, Jan 17 2019 %o A144186 (Magma) [Numerator(Binomial(2*n,n)/Factorial(n+1)): n in [0..30]]; // _G. C. Greubel_, Jan 17 2019 %o A144186 (Sage) [numerator(binomial(2*n,n)/factorial(n+1)) for n in (0..30)] # _G. C. Greubel_, Jan 17 2019 %Y A144186 Cf. A000108, A144187. %K A144186 nonn,frac %O A144186 0,4 %A A144186 _Eric W. Weisstein_, Sep 13 2008