cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144190 (0, 1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^2*3, ...) becomes (0 mod 1, 2 mod 3, 2 mod 2, 5 mod 2, 3 mod 7, 2 mod 3, 3 mod 2, 2 mod 5, 11 mod 2, 2 mod 3, ...).

This page as a plain text file.
%I A144190 #8 Oct 05 2015 02:57:06
%S A144190 0,2,0,1,3,2,1,2,1,2,1,1,1,4,2,2,0,2,1,11,2,3,0,1,1,2,1,3,1,2,1,2,1,2,
%T A144190 2,2,3,2,5,2,7,0,2,2,2,1,1,1,2,2,1,2,1,0,5,2,1,1,29,0,3,1,1,2,2,5,2,
%U A144190 11,0,2,1,5,1,0,2,2,3,0,2,7,2,13,2,2,0,41,0,3,5,2,3,2,11,2,2,7,0,2,1,2,1,2,1
%N A144190 (0, 1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^2*3, ...) becomes (0 mod 1, 2 mod 3, 2 mod 2, 5 mod 2, 3 mod 7, 2 mod 3, 3 mod 2, 2 mod 5, 11 mod 2, 2 mod 3, ...).
%e A144190 2 mod 3 = 1 = a(10),
%e A144190 13 mod 2 = 1 = a(11),
%e A144190 7 mod 3 = 1 = a(12),
%e A144190 5 mod 2 = 1 = a(13),
%e A144190 4 mod 17 = 4 = a(14),
%e A144190 2 mod 3 = 2 = a(15),
%e A144190 2 mod 19 = 2 = a(16),
%e A144190 2 mod 2 = 0 = a(17),
%e A144190 5 mod 3 = 2 = a(18),
%e A144190 7 mod 2 = 1 = a(19),
%e A144190 11 mod 23 = 11 = a(20), etc.
%p A144190 pflat := proc(nmax) local a, ifs, n, p, c ; a := [0,1] ; for n from 2 to nmax do ifs := ifactors(n)[2] ; for p in ifs do a := [op(a),op(1,p)] ; if op(2,p) > 1 then a := [op(a),op(2,p)] ; fi; od: od: a ; end: L := pflat(300) ; for n from 1 to nops(L)-2 by 2 do printf("%d,", op(n,L) mod op(n+1,L) ) ; end do: # _R. J. Mathar_, Apr 29 2010
%Y A144190 Cf. A136734, A136735, A143653.
%K A144190 nonn
%O A144190 1,2
%A A144190 _Juri-Stepan Gerasimov_, Nov 20 2008
%E A144190 a(10), a(43) and perhaps others corrected by _R. J. Mathar_, Apr 29 2010