This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144215 #20 Feb 04 2023 20:57:57 %S A144215 1,1,2,1,2,3,1,3,5,6,1,3,7,9,10,1,4,11,17,19,20,1,4,15,28,34,36,37,1, %T A144215 5,22,52,67,73,75,76,1,5,30,90,129,144,150,152,153,1,6,42,170,264,305, %U A144215 320,326,328,329,1,6,56,310,542,645,686,701,707,709,710 %N A144215 Triangle read by rows: T(n,k) is the number of forests on n unlabeled nodes with all nodes of degree <= k (n>=1, 0 <= k <= n-1). %H A144215 Andrew Howroyd, <a href="/A144215/b144215.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows) %H A144215 Rebecca Neville, <a href="https://web.archive.org/web/20191029092609/http://gtn.kazlow.info:80/GTN54.pdf">Graphs whose vertices are forests with bounded degree</a>, Graph Theory Notes of New York, LIV (2008), 12-21. [Wayback Machine link] %F A144215 Column k is Euler transform of column k of A144528. - _Andrew Howroyd_, Dec 18 2020 %e A144215 Triangle begins: %e A144215 1 %e A144215 1 2 %e A144215 1 2 3 %e A144215 1 3 5 6 %e A144215 1 3 7 9 10 %e A144215 1 4 11 17 19 20 %e A144215 1 4 15 28 34 36 37 %e A144215 ... %e A144215 From _Andrew Howroyd_, Dec 18 2020: (Start) %e A144215 Formatted as an array to show the full columns: %e A144215 ======================================================== %e A144215 n\k | 0 1 2 3 4 5 6 7 8 9 10 %e A144215 -----+-------------------------------------------------- %e A144215 1 | 1 1 1 1 1 1 1 1 1 1 1 ... %e A144215 2 | 1 2 2 2 2 2 2 2 2 2 2 ... %e A144215 3 | 1 2 3 3 3 3 3 3 3 3 3 ... %e A144215 4 | 1 3 5 6 6 6 6 6 6 6 6 ... %e A144215 5 | 1 3 7 9 10 10 10 10 10 10 10 ... %e A144215 6 | 1 4 11 17 19 20 20 20 20 20 20 ... %e A144215 7 | 1 4 15 28 34 36 37 37 37 37 37 ... %e A144215 8 | 1 5 22 52 67 73 75 76 76 76 76 ... %e A144215 9 | 1 5 30 90 129 144 150 152 153 153 153 ... %e A144215 10 | 1 6 42 170 264 305 320 326 328 329 329 ... %e A144215 11 | 1 6 56 310 542 645 686 701 707 709 710 ... %e A144215 12 | 1 7 77 600 1161 1431 1536 1577 1592 1598 1600 ... %e A144215 (End) %o A144215 (PARI) \\ Here V(n,k) gives column k of A144528. %o A144215 EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A144215 MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))} %o A144215 V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)} %o A144215 M(n, m=n)={Mat(vector(m, k, EulerT(V(n,k-1)[2..1+n])~))} %o A144215 { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) } \\ _Andrew Howroyd_, Dec 18 2020 %Y A144215 The final diagonal gives A005195. %Y A144215 Column k=2 is A000041. %Y A144215 Cf. A144528, A144529, A339788. %K A144215 nonn,tabl %O A144215 1,3 %A A144215 _N. J. A. Sloane_, Dec 20 2008 %E A144215 Terms a(29) and beyond from _Andrew Howroyd_, Dec 18 2020