cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144215 Triangle read by rows: T(n,k) is the number of forests on n unlabeled nodes with all nodes of degree <= k (n>=1, 0 <= k <= n-1).

This page as a plain text file.
%I A144215 #20 Feb 04 2023 20:57:57
%S A144215 1,1,2,1,2,3,1,3,5,6,1,3,7,9,10,1,4,11,17,19,20,1,4,15,28,34,36,37,1,
%T A144215 5,22,52,67,73,75,76,1,5,30,90,129,144,150,152,153,1,6,42,170,264,305,
%U A144215 320,326,328,329,1,6,56,310,542,645,686,701,707,709,710
%N A144215 Triangle read by rows: T(n,k) is the number of forests on n unlabeled nodes with all nodes of degree <= k (n>=1, 0 <= k <= n-1).
%H A144215 Andrew Howroyd, <a href="/A144215/b144215.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows)
%H A144215 Rebecca Neville, <a href="https://web.archive.org/web/20191029092609/http://gtn.kazlow.info:80/GTN54.pdf">Graphs whose vertices are forests with bounded degree</a>, Graph Theory Notes of New York, LIV (2008), 12-21. [Wayback Machine link]
%F A144215 Column k is Euler transform of column k of A144528. - _Andrew Howroyd_, Dec 18 2020
%e A144215 Triangle begins:
%e A144215   1
%e A144215   1 2
%e A144215   1 2  3
%e A144215   1 3  5  6
%e A144215   1 3  7  9 10
%e A144215   1 4 11 17 19 20
%e A144215   1 4 15 28 34 36 37
%e A144215   ...
%e A144215 From _Andrew Howroyd_, Dec 18 2020: (Start)
%e A144215 Formatted as an array to show the full columns:
%e A144215 ========================================================
%e A144215 n\k  | 0 1  2   3    4    5    6    7    8    9   10
%e A144215 -----+--------------------------------------------------
%e A144215    1 | 1 1  1   1    1    1    1    1    1    1    1 ...
%e A144215    2 | 1 2  2   2    2    2    2    2    2    2    2 ...
%e A144215    3 | 1 2  3   3    3    3    3    3    3    3    3 ...
%e A144215    4 | 1 3  5   6    6    6    6    6    6    6    6 ...
%e A144215    5 | 1 3  7   9   10   10   10   10   10   10   10 ...
%e A144215    6 | 1 4 11  17   19   20   20   20   20   20   20 ...
%e A144215    7 | 1 4 15  28   34   36   37   37   37   37   37 ...
%e A144215    8 | 1 5 22  52   67   73   75   76   76   76   76 ...
%e A144215    9 | 1 5 30  90  129  144  150  152  153  153  153 ...
%e A144215   10 | 1 6 42 170  264  305  320  326  328  329  329 ...
%e A144215   11 | 1 6 56 310  542  645  686  701  707  709  710 ...
%e A144215   12 | 1 7 77 600 1161 1431 1536 1577 1592 1598 1600 ...
%e A144215 (End)
%o A144215 (PARI) \\ Here V(n,k) gives column k of A144528.
%o A144215 EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
%o A144215 MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))}
%o A144215 V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)}
%o A144215 M(n, m=n)={Mat(vector(m, k, EulerT(V(n,k-1)[2..1+n])~))}
%o A144215 { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) } \\ _Andrew Howroyd_, Dec 18 2020
%Y A144215 The final diagonal gives A005195.
%Y A144215 Column k=2 is A000041.
%Y A144215 Cf. A144528, A144529, A339788.
%K A144215 nonn,tabl
%O A144215 1,3
%A A144215 _N. J. A. Sloane_, Dec 20 2008
%E A144215 Terms a(29) and beyond from _Andrew Howroyd_, Dec 18 2020