cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A144277 Second column (m=2) of triangle S2hat(-2) = A144275.

Original entry on oeis.org

1, 2, 14, 100, 1140, 14880, 249280, 4801280, 108574400, 2767072000, 79286592000, 2508856627200, 87115395136000, 3287694620672000, 134073047499776000, 5872147278807040000, 274939690654024704000, 13701683362561818624000, 724128149433185136640000
Offset: 0

Views

Author

Wolfdieter Lang, Oct 09 2008

Keywords

Crossrefs

Cf. A144275, A008544 (m=1 column), A144278 (m=3 column).

Formula

a(n) = A144275(n+2,2), n>=0.

A144278 Third column (m=3) of triangle S2hat(-2) = A144275.

Original entry on oeis.org

1, 2, 14, 108, 1180, 15400, 255400, 4888960, 109951360, 2793984000, 79855107200, 2522981120000, 87503244928000, 3299660415744000, 134477619593856000, 5887149103503360000, 275541626811601920000, 13727736328568199168000, 725335510624740370432000
Offset: 0

Views

Author

Wolfdieter Lang, Oct 09 2008

Keywords

Crossrefs

Cf. A144275, A144277 (m=2 column).

Formula

a(n) = A144275(n+3,3), n>=0.

A144276 Row sums of triangle A144275 (called S2hat(-2)).

Original entry on oeis.org

1, 3, 13, 97, 997, 13585, 225625, 4454801, 101415881, 2618639033, 75524367593, 2406745316697, 83950853842617, 3181371937414425, 130135485102246265, 5714800778645325881, 268144898273200109561, 13387708871579930596793, 708640690235801235876153
Offset: 1

Views

Author

Wolfdieter Lang, Oct 09 2008

Keywords

Crossrefs

Cf. A144275.

Formula

a(n) = Sum_{m=1..n} A144275(n,m), n>=1.

A144280 Lower triangular array called S2hat(-3) related to partition number array A144279.

Original entry on oeis.org

1, 3, 1, 21, 3, 1, 231, 30, 3, 1, 3465, 294, 30, 3, 1, 65835, 4599, 321, 30, 3, 1, 1514205, 81081, 4788, 321, 30, 3, 1, 40883535, 1837836, 84483, 4869, 321, 30, 3, 1, 1267389585, 47609100, 1892835, 85050, 4869, 321, 30, 3, 1, 44358635475, 1449052605, 48681864
Offset: 1

Views

Author

Wolfdieter Lang, Oct 09 2008

Keywords

Comments

If in the partition array M32khat(-3)= A144279 entries with the same parts number m are summed one obtains this triangle of numbers S2hat(-3). In the same way the Stirling2 triangle A008277 is obtained from the partition array M_3 = A036040.
The first three columns are A008545, A144282, A144283.

Examples

			Triangle begins:
  [1];
  [3,1];
  [21,3,1];
  [231,30,3,1];
  [3465,294,30,3,1];
  ...
		

Crossrefs

Row sums A144281.
Cf. A144275 (S2hat(-2)).

Formula

a(n,m) = Sum_{q=1..p(n,m)} Product_{j=1..n} |S2(-3;j,1)|^e(n,m,q,j) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S2(-3,n,1)|= A000369(n,1) = A008545(n-1) = (4*n-5)(!^4) (4-factorials) for n>=2 and 1 if n=1.

A144274 Partition number array, called M32hat(-2)= 'M32(-2)/M3'= 'A143172/A036040', related to A004747(n,m)= |S2(-2;n,m)| (generalized Stirling triangle).

Original entry on oeis.org

1, 2, 1, 10, 2, 1, 80, 10, 4, 2, 1, 880, 80, 20, 10, 4, 2, 1, 12320, 880, 160, 100, 80, 20, 8, 10, 4, 2, 1, 209440, 12320, 1760, 800, 880, 160, 100, 40, 80, 20, 8, 10, 4, 2, 1, 4188800, 209440, 24640, 8800, 6400, 12320, 1760, 800, 320, 200, 880, 160, 100, 40, 16, 80, 20
Offset: 1

Views

Author

Wolfdieter Lang, Oct 09 2008

Keywords

Comments

Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M32hat(-2;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
If M32hat(-2;n,k) is summed over those k with fixed number of parts m one obtains triangle S2hat(-2):= A144275(n,m).

Examples

			a(4,3) = 4 = |S2(-2,2,1)|^2. The relevant partition of 4 is (2^2).
		

Crossrefs

Cf. A144269 (M32hat(-1) array). A144279 (M32hat(-3) array).

Formula

a(n,k) = Product_{j=1..n} |S2(-2,j,1)|^e(n,k,j) with |S2(-2,n,1)|= A008544(n-1) = (3*n-4)(!^3) (3-factorials) for n>=2 and 1 if n=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
Formally a(n,k)= 'M32(-2)/M3' = 'A143172/A036040' (elementwise division of arrays).
Showing 1-5 of 5 results.