This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144285 #10 Aug 28 2019 17:41:23 %S A144285 1,4,1,36,4,1,504,52,4,1,9576,648,52,4,1,229824,12888,712,52,4,1, %T A144285 6664896,286272,13464,712,52,4,1,226606464,8182944,299520,13720,712, %U A144285 52,4,1,8837652096,266366016,8455392,301824,13720,712,52,4,1,388856692224,10191545280,273091392 %N A144285 Lower triangular array called S2hat(-4) related to partition number array A144284. %C A144285 If in the partition array M32khat(-4)= A144284 entries with the same parts number m are summed one obtains this triangle of numbers S2hat(-4). In the same way the Stirling2 triangle A008277 is obtained from the partition array M_3 = A036040. %C A144285 The first three columns are A008546, A144339, A144340. %H A144285 W. Lang, <a href="/A144285/a144285.txt">First 10 rows of the array and more.</a> %H A144285 W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Lang/lang.html">Combinatorial Interpretation of Generalized Stirling Numbers</a>, J. Int. Seqs. Vol. 12 (2009) 09.3.3. %F A144285 a(n,m)=sum(product(|S2(-4;j,1)|^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S2(-4,n,1)|= A011801(n,1) = A008546(n-1) = (5*n-6)(!^5) (5-factorials) for n>=2 and 1 if n=1. %e A144285 [1];[4,1];[36,4,1];[504,52,4,1];[9576,648,52,4,1];... %Y A144285 Row sums A144286. %Y A144285 A144280 (S2hat(-3)), A144342 (S2hat(-5)). %K A144285 nonn,easy,tabl %O A144285 1,2 %A A144285 _Wolfdieter Lang_ Oct 09 2008