This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144289 #30 Nov 01 2019 03:22:41 %S A144289 1,2,0,4,2,0,8,12,9,0,16,48,84,64,0,32,160,480,820,625,0,64,480,2160, %T A144289 6120,10230,7776,0,128,1344,8400,34720,94500,155274,117649,0,256,3584, %U A144289 29568,165760,647920,1712592,2776200,2097152,0,512,9216,96768,701568,3669120,13783392,35630784,57138120,43046721,0 %N A144289 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows: Number T(n,k) of forests of labeled rooted trees on n or fewer nodes using a subset of labels 1..n and k edges. %H A144289 Alois P. Heinz, <a href="/A144289/b144289.txt">Rows n = 0..140, flattened</a> %H A144289 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A144289 T(n,0) = 2^n, T(n,k) = 0 if k < 0 or n <= k, otherwise T(n,k) = n^(n-1) if k=n-1, otherwise T(n,k) = Sum_{j=0..k} C(n-1,j)*T(j+1,j)*T(n-1-j,k-j). %e A144289 T(3,1) = 12, because there are 12 forests of labeled rooted trees on 3 or fewer nodes using a subset of labels 1..3 and 1 edge: %e A144289 .1<2. .2<1. .1<3. .3<1. .2<3. .3<2. .1<2. .2<1. .1<3. .3<1. .2<3. .3<2. %e A144289 ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... %e A144289 ..... ..... ..... ..... ..... ..... .3... .3... .2... .2... .1... .1... %e A144289 Triangle begins: %e A144289 1; %e A144289 2, 0; %e A144289 4, 2, 0; %e A144289 8, 12, 9, 0; %e A144289 16, 48, 84, 64, 0; %e A144289 32, 160, 480, 820, 625, 0; %p A144289 T:= proc(n,k) option remember; %p A144289 if k=0 then 2^n %p A144289 elif k<0 or n<=k then 0 %p A144289 elif k=n-1 then n^(n-1) %p A144289 else add(binomial(n-1, j) *T(j+1, j) *T(n-1-j, k-j), j=0..k) %p A144289 fi %p A144289 end: %p A144289 seq(seq(T(n, k), k=0..n), n=0..11); %t A144289 T[n_, k_] := T[n, k] = Which[k == 0, 2^n, k<0 || n <= k, 0, k == n-1, n^(n-1), True, Sum[Binomial[n-1, j]*T[j+1, j]*T[n-1-j, k-j], {j, 0, k}]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 11}] // Flatten (* _Jean-François Alcover_, Jan 21 2014, translated from _Alois P. Heinz_'s Maple code *) %Y A144289 Columns 0, 1 give A000079, A001815. %Y A144289 First lower diagonal gives A000169 with first term 2. %Y A144289 Row sums give A088957. %Y A144289 Cf. A007318, A000142. %K A144289 nonn,tabl %O A144289 0,2 %A A144289 _Alois P. Heinz_, Sep 17 2008