This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144293 #25 Sep 08 2022 08:45:38 %S A144293 1,1,2,5,5,13,29,877,23,53,4639,22619,2423,27644437,1800937,1101959, %T A144293 43486067,255755771,5006399,222527,4326209287,188633,574631, %U A144293 13369534669,1204457631577,171659,11759883224809,2479031,171572636187431,3516743833 %N A144293 Largest prime factor of n-th Bell number A000110(n) (or 1 if A000110(n) = 1). %C A144293 From _David Pasino_, Dec 03 2008: (Start) %C A144293 The number of refinements of a partition is the product of the Bell numbers of the cell sizes. %C A144293 The number of encoarsements is the Bell number of the number of cells. %C A144293 For these to be equal, a Bell number has to be a product of Bell numbers. %C A144293 This happens if there are n-1 single-element cells and 1 n-element cell. %C A144293 Does it ever happen otherwise? (End) %H A144293 Amiram Eldar, <a href="/A144293/b144293.txt">Table of n, a(n) for n = 0..104</a> (terms 0..70 from T. D. Noe) %H A144293 Simon Plouffe, <a href="http://plouffe.fr/simon/constants/factors_of_bell_numbers.txt">Factors of Bell numbers</a> [_David Pasino_, Dec 03 2008] %H A144293 Prime-Numbers.org, <a href="http://www.prime-numbers.org/">Prime number checker up to 10000000000</a> [_David Pasino_, Dec 03 2008] %t A144293 Join[{1}, Table[FactorInteger[BellB[n]][[-1, 1]], {n, 40}]] (* _Vincenzo Librandi_, Jan 04 2017 *) %o A144293 (Magma) [1,1] cat [Maximum(PrimeDivisors(Bell(n))): n in [2..30]]; // _Vincenzo Librandi_, Jan 04 2017 %K A144293 nonn %O A144293 0,3 %A A144293 _N. J. A. Sloane_, Dec 03 2008 %E A144293 a(15)-a(20) from _David Pasino_, Dec 03 2008 %E A144293 a(21) onwards from _N. J. A. Sloane_, Dec 04 2008 %E A144293 Corrected by _David Pasino_, Dec 14 2008