This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144317 #11 Jun 11 2018 08:02:33 %S A144317 1,1,8,64,540,4320,35008,280064,2244152,17955008,143670304,1149362432, %T A144317 9195171392,73561371136,588492929536,4707943678208,37663565234758, %U A144317 301308521878064,2410468302643136,19283746421145088,154269972376667232 %N A144317 Shifts left when Dirichlet convolution (DC:(b,b)->a) applied 3 times. %H A144317 Alois P. Heinz, <a href="/A144317/b144317.txt">Table of n, a(n) for n = 1..500</a> %H A144317 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %p A144317 k:=3: with (numtheory): dc:= proc(b,c) proc(n) option remember; add (b(d) *c(n/d), d=`if`(n<0,{}, divisors(n))) end end: a:='a': b[1]:= dc(a,a): for t from 2 to k do b[t]:= dc(b[t-1], b[t-1]) od: a:= n-> `if`(n=1, 1, b[k](n-1)): seq (a(n), n=1..30); %t A144317 dc[b_, c_] := Module[{proc}, proc[n_] := proc[n] = Sum[b[d]*c[n/d], {d, If[n < 0, {}, Divisors[n]]}]; proc]; %t A144317 A[n_, k_] := Module[{a, b, t}, b[1] = dc[a, a]; For[t = 2, t <= k, t++, b[t] = dc[b[t-1], b[t-1]]]; a = Function[m, If[m == 1, 1, b[k][m - 1]]]; a[n]]; %t A144317 a[n_] := A[n, 3]; %t A144317 Array[a, 30] (* _Jean-François Alcover_, Jun 11 2018, after _Alois P. Heinz_ *) %Y A144317 3rd column of A144324, 7th column of A144823. %K A144317 eigen,nonn %O A144317 1,3 %A A144317 _Alois P. Heinz_, Sep 17 2008