This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144335 #12 Oct 21 2022 21:24:59 %S A144335 1,3,11,32,76,156,288,491,787,1201,1761,2498,3446,4642,6126,7941, %T A144335 10133,12751,15847,19476,23696,28568,34156,40527,47751,55901,65053, %U A144335 75286,86682,99326,113306,128713,145641,164187,184451,206536,230548,256596 %N A144335 Row sums of triangle A144334, binomial transform of [1, 2, 6, 7, 3, 0, 0, 0, ...]. %H A144335 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A144335 G.f.: (1 - 2x + 6x^2 - 3x^3 + x^4)*x/(1-x)^5. %F A144335 a(n) = 1 - (5/12)*n + (3/8)*n^2 - (1/12)*n^3 + (1/8)*n^4. - _R. J. Mathar_, Sep 18 2008 %e A144335 a(5) = 76 = (1, 4, 6, 4, 1) dot (1, 2, 6, 3, 7) = (1 + 8 + 36, + 28 + 3). %e A144335 a(3) = 11 = sum of row 3 terms of triangle A144334: (4 + 3 + 4). %t A144335 Table[1-5n/12+3n^2/8-n^3/12+n^4/8,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,3,11,32,76},40] (* _Harvey P. Dale_, Aug 22 2016 *) %o A144335 (PARI) a(n)=1-(5/12)*n+(3/8)*n^2-(1/12)*n^3+(1/8)*n^4 \\ _Charles R Greathouse IV_, Oct 21 2022 %Y A144335 Cf. A144334. %K A144335 nonn,easy %O A144335 1,2 %A A144335 _Gary W. Adamson_, Sep 18 2008 %E A144335 Extended by _R. J. Mathar_, Sep 18 2008