cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A157383 A partition product of Stirling_1 type [parameter k = -3] with biggest-part statistic (triangle read by rows).

Original entry on oeis.org

1, 1, 3, 1, 9, 12, 1, 45, 48, 60, 1, 165, 480, 300, 360, 1, 855, 3840, 3600, 2160, 2520, 1, 3843, 29400, 46200, 30240, 17640, 20160, 1, 21819, 272832, 520800, 443520, 282240, 161280, 181440
Offset: 1

Views

Author

Peter Luschny, Mar 07 2009, Mar 14 2009

Keywords

Comments

Partition product of prod_{j=0..n-2}(k-n+j+2) and n! at k = -3,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A144353.
Same partition product with length statistic is A046089.
Diagonal a(A000217(n)) = rising_factorial(3,n-1), A001710(n+1).
Row sum is A049376.

Crossrefs

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-2}(j-n-1).

A144354 Partition number array, called M31(4), related to A049352(n,m)= |S1(4;n,m)| (generalized Stirling triangle).

Original entry on oeis.org

1, 4, 1, 20, 12, 1, 120, 80, 48, 24, 1, 840, 600, 800, 200, 240, 40, 1, 6720, 5040, 7200, 4000, 1800, 4800, 960, 400, 720, 60, 1, 60480, 47040, 70560, 84000, 17640, 50400, 28000, 33600, 4200, 16800, 6720, 700, 1680, 84, 1, 604800, 483840, 752640, 940800, 504000, 188160
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008, Oct 28 2008

Keywords

Comments

Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31(4;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
Fourth member (K=4) in the family M31(K) of partition number arrays.
If M31(4;n,k) is summed over those k with fixed number of parts m one obtains the unsigned triangle |S1(4)|:= A049352.

Examples

			[1];[4,1];[20,12,1];[120,80,48,24,1];[840,600,800,200,240,40,1];...
a(4,3)= 48 = 3*|S1(4;2,1)|^2. The relevant partition of 4 is (2^2).
		

Crossrefs

A049377 (row sums).
A144353 (M31(3) array), A144355 (M31(5) array).

Formula

a(n,k)=(n!/product(e(n,k,j)!*j!^(e(n,k,j),j=1..n))*product(|S1(4;j,1)|^e(n,k,j),j=1..n) = M3(n,k)*product(|S1(4;j,1)|^e(n,k,j),j=1..n) with |S1(4;n,1)|= A001715(n+2) = (n+2)!/3!, n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. M3(n,k)=A036040.
Showing 1-2 of 2 results.