A144356 Partition number array, called M31(6), related to A049374(n,m)= |S1(6;n,m)| (generalized Stirling triangle).
1, 6, 1, 42, 18, 1, 336, 168, 108, 36, 1, 3024, 1680, 2520, 420, 540, 60, 1, 30240, 18144, 30240, 17640, 5040, 15120, 3240, 840, 1620, 90, 1, 332640, 211680, 381024, 493920, 63504, 211680, 123480, 158760, 11760, 52920, 22680, 1470, 3780, 126, 1, 3991680, 2661120
Offset: 1
Examples
[1];[6,1];[42,18,1];[336,168,108,36,1];[3024,1680,2520,420,540,60,1];... a(4,3)= 108 = 3*|S1(6;2,1)|^2. The relevant partition of 4 is (2^2).
Links
- W. Lang, First 10 rows of the array and more.
- W. Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) 09.3.3.
Formula
a(n,k)=(n!/product(e(n,k,j)!*j!^(e(n,k,j),j=1..n))*product(|S1(6;j,1)|^e(n,k,j),j=1..n)= M3(n,k)*product(|S1(6;j,1)|^e(n,k,j),j=1..n) with |S1(6;n,1)|= A001725(n+4) = (n+4)!/5!, n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. M3(n,k)=A036040.
Comments