cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144389 Triangle T(n,k) = n*binomial(n - 1, k) - (-1)^(n - k)*binomial(n, k), T(0,0) = 1, read by rows, 0 <= k <= n.

This page as a plain text file.
%I A144389 #10 Jan 26 2019 05:00:23
%S A144389 -1,2,-1,1,4,-1,4,3,6,-1,3,16,6,8,-1,6,15,40,10,10,-1,5,36,45,80,15,
%T A144389 12,-1,8,35,126,105,140,21,14,-1,7,64,140,336,210,224,28,16,-1,10,63,
%U A144389 288,420,756,378,336,36,18,-1,9,100,315,960,1050,1512,630,480,45,20,-1
%N A144389 Triangle T(n,k) = n*binomial(n - 1, k) - (-1)^(n - k)*binomial(n, k), T(0,0) = 1, read by rows, 0 <= k <= n.
%F A144389 T(n,k) = [x^k] (n*(x + 1)^(n - 1) - (x - 1)^n).
%F A144389 Sum_{k=0..n} T(n,k) = A001787(n), n >= 1.
%e A144389 Triangle begins:
%e A144389   -1;
%e A144389    2,  -1;
%e A144389    1,   4,  -1;
%e A144389    4,   3,   6,  -1;
%e A144389    3,  16,   6,   8,   -1;
%e A144389    6,  15,  40,  10,   10,   -1;
%e A144389    5,  36,  45,  80,   15,   12,  -1;
%e A144389    8,  35, 126, 105,  140,   21,  14,  -1;
%e A144389    7,  64, 140, 336,  210,  224,  28,  16, -1;
%e A144389   10,  63, 288, 420,  756,  378, 336,  36, 18, -1;
%e A144389    9, 100, 315, 960, 1050, 1512, 630, 480, 45, 20, -1;
%e A144389   ...
%t A144389 p[x_, n_] = -(x - 1)^n + n*(x + 1)^(n - 1);
%t A144389 Table[CoefficientList[p[x, n], x], {n, 0, 10}] // Flatten
%o A144389 (Maxima) create_list(n*binomial(n - 1, k) - (-1)^(n - k)*binomial(n, k), n , 0, 15, k, 0, n); /* _Franck Maminirina Ramaharo_, Jan 25 2019 */
%Y A144389 Cf. A001787, A007318, A130595, A144388, A216973.
%K A144389 sign,easy,tabl
%O A144389 0,2
%A A144389 _Roger L. Bagula_ and _Gary W. Adamson_, Oct 01 2008