This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144390 #60 Dec 31 2023 10:22:09 %S A144390 1,9,23,43,69,101,139,183,233,289,351,419,493,573,659,751,849,953, %T A144390 1063,1179,1301,1429,1563,1703,1849,2001,2159,2323,2493,2669,2851, %U A144390 3039,3233,3433,3639,3851,4069,4293,4523,4759,5001,5249,5503,5763,6029,6301,6579 %N A144390 a(n) = 3*n^2 - n - 1. %C A144390 Sequence's original Name was "First bisection of A135370." %C A144390 The partial sums of this sequence give A081437. - _Leo Tavares_, Dec 26 2021 %H A144390 Vincenzo Librandi, <a href="/A144390/b144390.txt">Table of n, a(n) for n = 1..1000</a> %H A144390 John Elias, <a href="/A144390/a144390.png">Illustration: Belted Hexagrams</a> %H A144390 Leo Tavares, <a href="/A144390/a144390.jpg">Illustration: Bounded Hexagons</a> %H A144390 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A144390 a(n+1) = a(n) + 6*n + 2; see A016933. %F A144390 G.f.: x*(1+6*x-x^2)/(1-x)^3. a(n) = A049450(n)-1. - _R. J. Mathar_, Oct 24 2008 %F A144390 a(-n) = A144391(n). - _Michael Somos_, Mar 27 2014 %F A144390 E.g.f.: (3*x^2 + 2*x -1)*exp(x) + 1. - _G. C. Greubel_, Jul 19 2017 %F A144390 From _Leo Tavares_, Dec 26 2021: (Start) %F A144390 a(n) = A003215(n) - 2*A005408(n). See Bounded Hexagons illustration. %F A144390 a(n) = A016754(n-1) - A002378(n-2). (End) %F A144390 a(n) = A003154(n) - A049451(n-1). - _John Elias_, Dec 22 2022 %p A144390 A144390:=n->3*n^2-n-1; seq(A144390(n), n=1..50); # _Wesley Ivan Hurt_, Mar 26 2014 %t A144390 Table[3*n^2 -n -1 , {n,0,50}] (* _G. C. Greubel_, Jul 19 2017 *) %o A144390 (Magma) [3*n^2-n-1: n in [1..60]]; // _Vincenzo Librandi_, Jun 14 2011 %o A144390 (PARI) a(n)=3*n^2-n-1 \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A144390 Cf. A016933, A049450, A144391. %Y A144390 Cf. A003215, A005408, A016754, A002378. %Y A144390 Cf. A081437 (partial sums). %K A144390 nonn,easy %O A144390 1,2 %A A144390 _Paul Curtz_, Oct 02 2008 %E A144390 Edited by _R. J. Mathar_, Oct 24 2008 %E A144390 More terms from _Vladimir Joseph Stephan Orlovsky_, Oct 25 2008