This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144398 #2 Oct 12 2012 14:54:54 %S A144398 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,10,10,5,1,1,6,15,0,15,6,1,1,7,21,0, %T A144398 0,21,7,1,1,8,28,0,0,0,28,8,1,1,9,36,0,0,0,0,36,9,1,1,10,45,0,0,0,0,0, %U A144398 45,10,1 %N A144398 Coefficients of a symmetrical polynomial set:( Pascal's triangle with central zeros) p(x,n)=If[n <= 4, Sum[Binomial[n, i]*x^i, {i, 0, n}], x^n + n*x^(n - 1) + Binomial[n, 2]*x^(n - 2) + n*x + Binomial[n, 2]*x^2 + 1]. %C A144398 Row sums are: (related to A014206) %C A144398 {1, 2, 4, 8, 16, 32, 44, 58, 74, 92, 112} %F A144398 p(x,n)=If[n <= 4, Sum[Binomial[n, i]*x^i, {i, 0, n}], x^n + n*x^(n - 1) + Binomial[n, 2]*x^(n - 2) + n*x + Binomial[n, 2]*x^2 + 1]; t(n,m)=coefficients(p(x,n)). %e A144398 {1}, %e A144398 {1, 1}, %e A144398 {1, 2, 1}, %e A144398 {1, 3, 3, 1}, %e A144398 {1, 4, 6, 4, 1}, %e A144398 {1, 5, 10, 10, 5, 1}, %e A144398 {1, 6, 15, 0, 15, 6, 1}, %e A144398 {1, 7, 21, 0, 0, 21, 7, 1}, %e A144398 {1, 8, 28, 0, 0, 0, 28, 8, 1}, %e A144398 {1, 9, 36, 0, 0, 0, 0, 36, 9, 1}, %e A144398 {1, 10, 45, 0, 0, 0, 0, 0, 45, 10, 1} %t A144398 Clear[p, n]; p[x_, n_] = If[n <= 4, Sum[Binomial[n, i]*x^i, {i, 0, n}], x^n + n*x^(n - 1) + Binomial[n, 2]*x^(n - 2) + n*x + Binomial[n, 2]*x^2 + 1]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[%] %K A144398 nonn,uned %O A144398 1,5 %A A144398 _Roger L. Bagula_ and _Gary W. Adamson_, Oct 03 2008