cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144409 Antidiagonal expansion of: f(t,n) = If[n == 1, 1/(1 - t), 1/(1 - t^floor(n/2) - t^n)].

This page as a plain text file.
%I A144409 #4 Dec 07 2016 23:17:31
%S A144409 1,1,1,1,1,1,1,1,2,1,1,0,1,3,1,1,0,1,2,5,1,1,0,1,0,3,8,1,1,0,0,0,2,4,
%T A144409 13,1,1,0,0,1,1,0,6,21,1,1,0,0,1,0,1,3,9,34,1,1,0,0,0,0,0,1,0,13,55,1,
%U A144409 1,0,0,0,1,0,2,2,5,19,89,1,1,0,0,0,1,0,1,0,1,0,28,144,1,1,0,0,0,0,0,0,1,0,3
%N A144409 Antidiagonal expansion of: f(t,n) = If[n == 1, 1/(1 - t), 1/(1 - t^floor(n/2) - t^n)].
%C A144409 Row sums are {1, 2, 3, 5, 6, 10, 14, 21, 31, 50, 71, 120, 177, 288, 445}.
%F A144409 f(t,n) = If[n == 1, 1/(1 - t), 1/(1 - t^floor(n/2) - t^n)); t(n,m) = antidiagonal_expansion(f(t,n)).
%e A144409 {1},
%e A144409 {1, 1},
%e A144409 {1, 1, 1},
%e A144409 {1, 1, 2, 1},
%e A144409 {1, 0, 1, 3, 1},
%e A144409 {1, 0, 1, 2, 5, 1},
%e A144409 {1, 0, 1, 0, 3, 8, 1},
%e A144409 {1, 0, 0, 0, 2, 4, 13, 1},
%e A144409 {1, 0, 0, 1, 1, 0, 6, 21, 1},
%e A144409 {1, 0, 0, 1, 0, 1, 3, 9, 34, 1},
%e A144409 {1, 0, 0, 0, 0, 0, 1, 0, 13, 55, 1},
%e A144409 {1, 0, 0, 0, 1, 0, 2, 2, 5, 19, 89, 1},
%e A144409 {1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 28, 144, 1},
%e A144409 {1, 0, 0, 0, 0, 0, 0, 1, 0, 3, 8, 41, 233, 1},
%e A144409 {1, 0, 0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 60, 377, 1}
%t A144409 f[t_, n_] = If[n == 1, 1/(1 - t), 1/(1 - t^Floor[n/2] - t^n)]; a = Table[Table[SeriesCoefficient[Series[f[t, m], {t, 0, 30}], n], {n, 0, 30}], {m, 1, 31}]; b = Table[Table[a[[n - m + 1]][[m]], {m, 1, n }], {n, 1, 15}] ; Flatten[b]
%Y A144409 Cf. A099238.
%K A144409 nonn,uned
%O A144409 1,9
%A A144409 _Roger L. Bagula_ and _Gary W. Adamson_, Sep 30 2008