This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144432 #11 Mar 02 2022 08:57:25 %S A144432 -1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,5,1,5,-1,-1,11,1,1,11,-1,-1,19,41,71, %T A144432 41,19,-1,-1,29,71,29,29,71,29,-1,-1,41,239,701,869,701,239,41,-1,-1, %U A144432 55,379,811,181,181,811,379,55,-1 %N A144432 Triangle, T(n, k), read by rows: T(n, k) = t(n, k)^2 - t(n, k) - 1, where t(n,k) = (m*(n-k) + 1)*t(n-1, k-1) + (m*k - (m-1))*t(n-1, k) and m = -1. %H A144432 G. C. Greubel, <a href="/A144432/b144432.txt">Rows n = 1..50 of the triangle, flattened</a> %F A144432 T(n, k) = t(n, k)^2 - t(n, k) - 1, where t(n,k) = (m*(n-k) + 1)*t(n-1, k-1) + (m*k - (m-1))*t(n-1, k) and m = -1. %F A144432 From _G. C. Greubel_, Mar 02 2022: (Start) %F A144432 T(n, n-k) = T(n, k). %F A144432 T(n, k) = t(n,k)^2 - t(n,k) - 1, where t(n,k) = (-1)^(k-1)*binomial(n-3, k-1) + (-1)^(n+k)*binomial(n-3, k-3) with t(1, k) = t(2, k) = 1. %F A144432 Sum_{k=1..n} T(n,k) = -n*[n<4] + ( 2*binomial(2*n-6, n-3)*(binomial(n-1,2) - (-1)^n*binomial(n-3,2))/binomial(n-1,2) - n )*[n>=4]. (End) %e A144432 Triangle begins as: %e A144432 -1; %e A144432 -1, -1; %e A144432 -1, -1, -1; %e A144432 -1, 1, 1, -1; %e A144432 -1, 5, 1, 5, -1; %e A144432 -1, 11, 1, 1, 11, -1; %e A144432 -1, 19, 41, 71, 41, 19, -1; %e A144432 -1, 29, 71, 29, 29, 71, 29, -1; %e A144432 -1, 41, 239, 701, 869, 701, 239, 41, -1; %e A144432 -1, 55, 379, 811, 181, 181, 811, 379, 55, -1; %t A144432 t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*(n-k)+1)*t[n-1,k-1,m] + (m*(k - 1)+1)*t[n-1,k,m]]; %t A144432 T[n_, k_, m_]:= t[n,k,m]^2 -t[n,k,m] -1; %t A144432 Table[T[n,k,-1], {n,15}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Mar 02 2022 *) %o A144432 (Sage) %o A144432 def t(n,k): %o A144432 if (n<3): return 1 %o A144432 else: return (-1)^(k-1)*binomial(n-3, k-1) + (-1)^(n+k)*binomial(n-3, k-3) %o A144432 def A144432(n,k): return t(n,k)^2 - t(n,k) - 1 %o A144432 flatten([[A144432(n,k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Mar 02 2022 %Y A144432 Cf. A098593, A144431. %K A144432 sign,tabl %O A144432 1,12 %A A144432 _Roger L. Bagula_, Oct 04 2008 %E A144432 Edited by _G. C. Greubel_, Mar 02 2022