This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144442 #9 Mar 04 2022 01:28:14 %S A144442 1,1,1,1,17,1,1,118,118,1,1,729,2681,729,1,1,4400,41745,41745,4400,1, %T A144442 1,26431,555240,1349245,555240,26431,1,1,158622,6816846,33456685, %U A144442 33456685,6816846,158622,1,1,951773,80034743,715321156,1411926995,715321156,80034743,951773,1 %N A144442 Triangle read by rows: T(n, k) = (5*n-5*k+1)*T(n-1, k-1) +(5*k-4)*T(n-1, k) + 5*T(n-2, k-1) with T(n, 1) = T(n, n) = 1. %H A144442 G. C. Greubel, <a href="/A144442/b144442.txt">Rows n = 1..50 of the triangle, flattened</a> %F A144442 T(n, k) = (5*n-5*k+1)*T(n-1, k-1) +(5*k-4)*T(n-1, k) + 5*T(n-2, k-1) with T(n, 1) = T(n, n) = 1. %F A144442 Sum_{k=1..n} T(n, k) = s(n), where s(n) = (5*n-8)*s(n-1) + 5*s(n-2), with s(1) = 1, s(2) = 2. %F A144442 From _G. C. Greubel_, Mar 03 2022: (Start) %F A144442 T(n, n-k) = T(n, k). %F A144442 T(n, 2) = (1/5)*(17*6^(n - 2) - (5*n + 2)). %F A144442 T(n, 3) = (1/50)*(25*n^2 - 5*n - 31 - 34*6^(n - 3)*(30*n - 13) + %F A144442 2489*11^(n - 3)). (End) %e A144442 Triangle begins as: %e A144442 1; %e A144442 1, 1; %e A144442 1, 17, 1; %e A144442 1, 118, 118, 1; %e A144442 1, 729, 2681, 729, 1; %e A144442 1, 4400, 41745, 41745, 4400, 1; %e A144442 1, 26431, 555240, 1349245, 555240, 26431, 1; %e A144442 1, 158622, 6816846, 33456685, 33456685, 6816846, 158622, 1; %e A144442 1, 951773, 80034743, 715321156, 1411926995, 715321156, 80034743, 951773, 1; %t A144442 T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]]; %t A144442 Table[T[n,k,5,5], {n,12}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Mar 03 2022 *) %o A144442 (Sage) %o A144442 def T(n,k,m,j): %o A144442 if (k==1 or k==n): return 1 %o A144442 else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j) %o A144442 def A144442(n,k): return T(n,k,5,5) %o A144442 flatten([[A144442(n,k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Mar 03 2022 %Y A144442 Cf. A144431, A144432, A144435, A144436, A144438, A144439, A144440, A144441, A144443, A144444, A144445. %K A144442 nonn,tabl %O A144442 1,5 %A A144442 _Roger L. Bagula_ and _Gary W. Adamson_, Oct 05 2008