This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144443 #8 Mar 04 2022 17:17:10 %S A144443 1,1,1,1,20,1,1,159,159,1,1,1138,4254,1138,1,1,7997,77878,77878,7997, %T A144443 1,1,56016,1219167,2984888,1219167,56016,1,1,392155,17633649,87659315, %U A144443 87659315,17633649,392155,1,1,2745134,244083268,2219485106,4400875078,2219485106,244083268,2745134,1 %N A144443 Triangle read by rows: T(n, k) = (6*n-6*k+1)*T(n-1, k-1) + (6*k-5)*T(n-1, k) + 6*T(n-2, k-1) with T(n, 1) = T(n, n) = 1. %H A144443 G. C. Greubel, <a href="/A144443/b144443.txt">Rows n = 1..50 of the triangle, flattened</a> %F A144443 T(n, k) = (6*n-6*k+1)*T(n-1, k-1) + (6*k-5)*T(n-1, k) + 6*T(n-2, k-1) with T(n, 1) = T(n, n) = 1. %F A144443 Sum_{k=1..n} T(n, k) = s(n), where s(n) = 2*(3*n-5)*s(n-1) + 6*s(n-2), s(1) = 1, s(2) = 2. %F A144443 From _G. C. Greubel_, Mar 04 2022: (Start) %F A144443 T(n, n-k) = T(n, k). %F A144443 T(n, 2) = (1/3)*(10*7^(n-2) - (3*n+1)). %F A144443 T(n, 3) = (1/18)*(9*n^2 -3*n -11 - 20*(21*n-11)*7^(n-3) + 997*13^(n-3)). (End) %e A144443 Triangle begins as: %e A144443 1; %e A144443 1, 1; %e A144443 1, 20, 1; %e A144443 1, 159, 159, 1; %e A144443 1, 1138, 4254, 1138, 1; %e A144443 1, 7997, 77878, 77878, 7997, 1; %e A144443 1, 56016, 1219167, 2984888, 1219167, 56016, 1; %e A144443 1, 392155, 17633649, 87659315, 87659315, 17633649, 392155, 1; %t A144443 T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]]; %t A144443 Table[T[n,k,6,6], {n,15}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Mar 04 2022 *) %o A144443 (Sage) %o A144443 def T(n,k,m,j): %o A144443 if (k==1 or k==n): return 1 %o A144443 else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j) %o A144443 def A144443(n,k): return T(n,k,6,6) %o A144443 flatten([[A144443(n,k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Mar 04 2022 %Y A144443 Cf. A144431, A144432, A144435, A144436, A144438, A144439, A144440, A144441, A144442, A144444, A144445. %K A144443 nonn,tabl %O A144443 1,5 %A A144443 _Roger L. Bagula_ and _Gary W. Adamson_, Oct 05 2008