cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144446 Array t(n, k) = (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k), with t(1, k) = 1, t(2, k) = 2, read by antidiagonals.

This page as a plain text file.
%I A144446 #11 Mar 06 2022 04:48:06
%S A144446 1,2,1,7,2,1,30,10,2,1,157,64,13,2,1,972,532,110,16,2,1,6961,5448,
%T A144446 1249,168,19,2,1,56660,66440,17816,2416,238,22,2,1,516901,941056,
%U A144446 306619,44160,4141,320,25,2,1,5225670,15189776,6185828,981184,92292,6532,414,28,2,1
%N A144446 Array t(n, k) = (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k), with t(1, k) = 1, t(2, k) = 2, read by antidiagonals.
%H A144446 G. C. Greubel, <a href="/A144446/b144446.txt">Antidiagonals n = 1..50, flattened</a>
%F A144446 T(n, k) = t(n-k+1, k), where t(n, k) = (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k) with t(1, k) = 1, t(2, k) = 2.
%F A144446 T(n, 1) = A001053(n+1).
%F A144446 T(n, k) = (k*(n-k)+2-k)*T(n-1, k) + k*T(n-2, k) with T(n, n-1) = 2, T(n, n) = 1 (as a triangle). - _G. C. Greubel_, Mar 05 2022
%e A144446 Array t(n,k) begins as:
%e A144446     1,    1,     1,     1,     1,      1, ...;
%e A144446     2,    2,     2,     2,     2,      2, ...;
%e A144446     7,   10,    13,    16,    19,     22, ...;
%e A144446    30,   64,   110,   168,   238,    320, ...;
%e A144446   157,  532,  1249,  2416,  4141,   6532, ...;
%e A144446   972, 5448, 17816, 44160, 92292, 171752, ...;
%e A144446 Antidiagonal triangle T(n,k) begins as:
%e A144446         1;
%e A144446         2,        1;
%e A144446         7,        2,       1;
%e A144446        30,       10,       2,      1;
%e A144446       157,       64,      13,      2,     1;
%e A144446       972,      532,     110,     16,     2,    1;
%e A144446      6961,     5448,    1249,    168,    19,    2,   1;
%e A144446     56660,    66440,   17816,   2416,   238,   22,   2,  1;
%e A144446    516901,   941056,  306619,  44160,  4141,  320,  25,  2, 1;
%e A144446   5225670, 15189776, 6185828, 981184, 92292, 6532, 414, 28, 2, 1;
%t A144446 t[n_, k_]:= t[n, k]= If[n<3, n, (k*(n-1) +2-k)*t[n-1,k] + k*t[n-2,k]];
%t A144446 T[n_, k_]:= t[n-k+1,k];
%t A144446 Table[T[n, k], {n, 12}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Mar 05 2022 *)
%o A144446 (Magma)
%o A144446 function T(n,k) // triangle form; A144446
%o A144446   if k gt n-2 then return n-k+1;
%o A144446   else return (k*(n-k)+2-k)*T(n-1, k) + k*T(n-2, k);
%o A144446   end if; return T;
%o A144446 end function;
%o A144446 [T(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Mar 05 2022
%o A144446 (Sage)
%o A144446 def t(n,k): return n if(n<3) else (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k)
%o A144446 def A144446(n,k): return t(n-k+1,k)
%o A144446 flatten([[A144446(n,k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Mar 05 2022
%Y A144446 Cf. A144431, A144432, A144435, A144436, A144438, A144439, A144440, A144441, A144442, A144443, A144444, A144445, A144447.
%Y A144446 Cf. A001053.
%K A144446 nonn,tabl
%O A144446 1,2
%A A144446 _Roger L. Bagula_ and _Gary W. Adamson_, Oct 05 2008
%E A144446 Edited by _G. C. Greubel_, Mar 05 2022