This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144447 #12 May 23 2023 08:17:35 %S A144447 1,1,1,1,4,1,1,7,13,1,1,10,34,49,1,1,13,64,160,211,1,1,16,103,361,781, %T A144447 994,1,1,19,151,679,1981,3967,4963,1,1,22,208,1141,4162,10891,20815, %U A144447 25780,1,1,25,274,1774,7756,24790,60463,112021,137803,1 %N A144447 Triangle T(n, k) = T(n-1, k) + T(n, k-1) + T(n-1, k-1) + T(n-2, k-1), with T(n, 1) = T(n, n) = 1, read by rows. %H A144447 G. C. Greubel, <a href="/A144447/b144447.txt">Rows n = 1..50 of the triangle, flattened</a> %F A144447 T(n, k) = T(n-1, k) + T(n, k-1) + T(n-1, k-1) + T(n-2, k-1), with T(n, 1) = T(n, n) = 1. %F A144447 From _G. C. Greubel_, Mar 09 2022: (Start) %F A144447 T(n, 2) = (3*n) - 5. %F A144447 T(n, 3) = (1/2!)*((3*n)^2 - 13*(3*n) + 38). %F A144447 T(n, 4) = (1/3!)*((3*n)^3 - 24*(3*n)^2 + 195*(3*n) - 606). %F A144447 T(n, 5) = (1/4!)*((3*n)^4 - 38*(3*n)^3 + 579*(3*n)^2 - 4422*(3*n) + 13704). (End) %e A144447 Triangle begins as: %e A144447 1; %e A144447 1, 1; %e A144447 1, 4, 1; %e A144447 1, 7, 13, 1; %e A144447 1, 10, 34, 49, 1; %e A144447 1, 13, 64, 160, 211, 1; %e A144447 1, 16, 103, 361, 781, 994, 1; %e A144447 1, 19, 151, 679, 1981, 3967, 4963, 1; %e A144447 1, 22, 208, 1141, 4162, 10891, 20815, 25780, 1; %e A144447 1, 25, 274, 1774, 7756, 24790, 60463, 112021, 137803, 1; %t A144447 T[n_, k_]:= T[n,k]= If[k==1 || k==n, 1, T[n-1,k]+T[n,k-1]+T[n-1,k-1]+T[n-2,k-1]]; %t A144447 Table[T[n, k], {n,15}, {k,n}]//Flatten %o A144447 (Sage) %o A144447 def T(n,k): return 1 if (k==1 or k==n) else T(n-1, k) + T(n, k-1) + T(n-1, k-1) + T(n-2, k-1) # A144447 %o A144447 flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Mar 06 2022 %K A144447 nonn,tabl %O A144447 1,5 %A A144447 _Roger L. Bagula_ and _Gary W. Adamson_, Oct 05 2008 %E A144447 Edited by _G. C. Greubel_, Mar 06 2022