cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144472 Negative values along the main diagonal of the array defined by A020806 and its differences.

This page as a plain text file.
%I A144472 #11 Nov 06 2017 06:22:57
%S A144472 -1,2,9,13,31,57,119,233,471,937,1879,3753,7511,15017,30039,60073,
%T A144472 120151,240297,480599,961193,1922391,3844777,7689559,15379113,
%U A144472 30758231,61516457,123032919,246065833,492131671,984263337,1968526679,3937053353,7874106711
%N A144472 Negative values along the main diagonal of the array defined by A020806 and its differences.
%H A144472 Colin Barker, <a href="/A144472/b144472.txt">Table of n, a(n) for n = 1..1000</a>
%H A144472 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,2).
%F A144472 a(n+1) - 2*a(n) = (-1)^n*A010716(n), n>1, period 2.
%F A144472 G.f.: x*(1-3*x-9*x^2) / ((1+x)*(2*x-1)). - _R. J. Mathar_, Oct 24 2008
%F A144472 a(n) = 11*2^(n-2)/3 - 5*(-1)^n/3, n>1. - _R. J. Mathar_, Oct 24 2008
%F A144472 From _Colin Barker_, Nov 06 2017: (Start)
%F A144472 a(n) = (11*2^n - 20) / 12 for n>1 and even.
%F A144472 a(n) = (11*2^n + 20) / 12 for n>1 and odd.
%F A144472 a(n) = a(n-1) + 2*a(n-2) for n>3.
%F A144472 (End)
%e A144472 A020806 and its repeated differences in the next rows start as follows:
%e A144472 ..1,..4,..2,..8,..5,..7,..1,..4,..2,..8, <- A020806
%e A144472 ..3,.-2,..6,.-3,..2,.-6,..3,.-2,..6,.-3, <- A131969
%e A144472 .-5,..8,.-9,..5,.-8,..9,.-5,..8,.-9,..5,
%e A144472 .13,-17,.14,-13,.17,-14,.13,-17,.14,-13,
%e A144472 -30,.31,-27,.30,-31,.27,-30,.31,-27,.30,
%e A144472 .61,-58,.57,-61,.58,-57,.61,-58,.57,-61,
%e A144472 The diagonal is 1,-2,-9,-13,-31,... which yields a(n) after signs are flipped.
%t A144472 Join[{-1}, LinearRecurrence[{1, 2}, {2, 9}, 40]] (* _Jean-François Alcover_, Nov 06 2017 *)
%o A144472 (PARI) Vec(-x*(1 - 3*x - 9*x^2) / ((1 + x)*(1 - 2*x)) + O(x^50)) \\ _Colin Barker_, Nov 06 2017
%K A144472 sign,easy
%O A144472 1,2
%A A144472 _Paul Curtz_, Oct 10 2008, Oct 14 2008
%E A144472 Edited and extended by _R. J. Mathar_, Oct 24 2008