cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144479 a(0)=1, a(1)=3, a(n) = 8*a(n-1) - a(n-2).

This page as a plain text file.
%I A144479 #21 Sep 08 2022 08:45:38
%S A144479 1,3,23,181,1425,11219,88327,695397,5474849,43103395,339352311,
%T A144479 2671715093,21034368433,165603232371,1303791490535,10264728691909,
%U A144479 80814038044737,636247575665987,5009166567283159,39437084962599285,310487513133511121,2444463020105489683
%N A144479 a(0)=1, a(1)=3, a(n) = 8*a(n-1) - a(n-2).
%C A144479 A105426 extended backwards.
%H A144479 Colin Barker, <a href="/A144479/b144479.txt">Table of n, a(n) for n = 0..1000</a>
%H A144479 <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a>
%H A144479 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8, -1).
%F A144479 G.f.: (1-5*x)/(1-8*x+x^2). - _Philippe Deléham_, Mar 28 2009
%F A144479 a(n) = A001090(n+1)-5*A001090(n). - _R. J. Mathar_, Mar 29 2009
%F A144479 a(n) = (((4-sqrt(15))^n*(1+sqrt(15))+(-1+sqrt(15))*(4+sqrt(15))^n))/(2*sqrt(15)). - _Colin Barker_, Oct 12 2015
%t A144479 LinearRecurrence[{8, -1}, {1, 3}, 25] (* _Vincenzo Librandi_, Oct 12 2015 *)
%o A144479 (PARI) Vec((1-5*x)/(1-8*x+x^2) + O(x^40)) \\ _Colin Barker_, Oct 12 2015
%o A144479 (Magma) I:=[1,3]; [n le 2 select I[n] else 8*Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Oct 12 2015
%K A144479 nonn,easy
%O A144479 0,2
%A A144479 _N. J. A. Sloane_, Mar 28 2009
%E A144479 More terms from _Philippe Deléham_ and _R. J. Mathar_, Mar 28 2009