cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144497 Row 4 of array in A144502.

This page as a plain text file.
%I A144497 #14 Oct 08 2023 04:43:03
%S A144497 37,266,2165,19714,198773,2199722,26516581,345921410,4856217989,
%T A144497 73003575178,1170146049557,19921780455746,359032158501205,
%U A144497 6828661185433514,136693194501702533,2872718327660671042,63240895146440396261,1455362908778264247050,34945987212582211588789
%N A144497 Row 4 of array in A144502.
%H A144497 Seiichi Manyama, <a href="/A144497/b144497.txt">Table of n, a(n) for n = 0..444</a>
%F A144497 E.g.f.: exp(x)*(37-30*x+9*x^2-x^3)/(1-x)^7.
%F A144497 a(n) = (n*(n^6 + 21*n^5 + 172*n^4 + 705*n^3 + 1522*n^2 + 1623*n + 653)*a(n-1) - (n^3 + 12*n^2 + 41*n + 37))/(n^6 + 15*n^5 + 82*n^4 + 207*n^3 + 244*n^2 + 105*n - 1), with a(0) = 37. - _G. C. Greubel_, Oct 08 2023
%t A144497 a[n_]:= If[n<1, 37, (n*(n^6+21*n^5+172*n^4+705*n^3+1522*n^2+1623*n +653)*a[n-1] -(n^3+12*n^2+41*n+37))/(n^6+15*n^5+82*n^4+207*n^3 +244*n^2+105*n-1)];
%t A144497 Table[a[n], {n,0,40}] (* _G. C. Greubel_, Oct 08 2023 *)
%o A144497 (PARI) my(x='x+O('x^25)); Vec(serlaplace(exp(x)*(37-30*x+9*x^2-x^3)/(1-x)^7)) \\ _Michel Marcus_, Apr 06 2019
%o A144497 (Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (37-30*x+9*x^2-x^3)*Exp(x)/(1-x)^7 ))); // _G. C. Greubel_, Oct 08 2023
%o A144497 (SageMath)
%o A144497 def A144497_list(prec):
%o A144497     P.<x> = PowerSeriesRing(QQ, prec)
%o A144497     return P( (37-30*x+9*x^2-x^3)*exp(x)/(1-x)^7 ).egf_to_ogf().list()
%o A144497 A144497_list(40) # _G. C. Greubel_, Oct 08 2023
%Y A144497 Cf. A144495, A144496, A144498, A144499, A144500, A144501, A144502, A144503.
%K A144497 nonn
%O A144497 0,1
%A A144497 _David Applegate_ and _N. J. A. Sloane_, Dec 13 2008