cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144539 Unique sequence of digits a(0), a(1), a(2), .. such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n satisfies 11^A(k) == A(k) mod 10^k.

Original entry on oeis.org

1, 1, 6, 6, 6, 6, 2, 7, 1, 9, 7, 8, 3, 0, 7, 6, 6, 2, 0, 2, 7, 1, 9, 8, 7, 9, 3, 4, 3, 2, 6, 9, 8, 1, 1, 7, 5, 1, 0, 2, 0, 4, 5, 9, 4, 3, 9, 9, 9, 4, 5, 3, 9, 3, 9, 2, 4, 3, 8, 4, 1, 6, 0, 5, 6, 8, 8, 0, 6, 4, 2, 9, 2, 6, 1, 6, 6, 4, 0, 9, 0, 3, 9, 4, 9, 6, 8, 9, 0, 8, 6, 9, 1, 8, 7, 5, 0, 5, 8, 6, 7, 4, 6, 5, 3
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2008

Keywords

Examples

			116666271978307662027198793432698117510204594399945393924384160568806429261664...
		

References

  • M. RipĂ , La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs

Programs

  • Mathematica
    (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[11, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)

Extensions

a(68) onward from Robert G. Wilson v, Mar 06 2014