cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144543 Unique sequence of digits a(0), a(1), a(2), .. such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n satisfies 15^A(k) == A(k) mod 10^k.

Original entry on oeis.org

5, 7, 3, 9, 5, 8, 0, 8, 3, 5, 6, 7, 0, 9, 6, 0, 8, 6, 4, 4, 9, 3, 4, 6, 1, 1, 9, 2, 8, 3, 7, 9, 3, 8, 6, 2, 4, 7, 7, 8, 5, 8, 6, 5, 4, 4, 7, 2, 3, 9, 3, 0, 4, 9, 4, 3, 1, 4, 4, 1, 9, 0, 4, 9, 3, 0, 0, 1, 2, 2, 1, 9, 8, 5, 2, 4, 5, 2, 4, 5, 3, 6, 5, 5, 8, 6, 7, 2, 7, 5, 4, 7, 7, 4, 6, 9, 1, 8, 3, 8, 3, 7, 1, 5, 0
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2008

Keywords

Examples

			573958083567096086449346119283793862477858654472393049431441904930012219852452...
		

References

  • M. RipĂ , La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs

Programs

  • Mathematica
    (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[15, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)

Extensions

a(68) onward from Robert G. Wilson v, Mar 06 2014