cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144545 a(n) = 2^(n*(n-1))*(2^n + 1)*Product_{i=1..n-1} (4^i - 1).

Original entry on oeis.org

2, 3, 60, 25920, 197406720, 25015379558400, 51615733565620224000, 1718194449153210615595008000, 918817155086936330770931156779008000, 7877103854727828347931810809383874168094720000, 1081561598265935342583934931877242782978883444539392000000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2008

Keywords

Crossrefs

Programs

  • Maple
    g:=m->2^(m*(m-1))*mul( 4^i-1, i=1..m-1)*(2^m+1);
  • Mathematica
    a[n_] := 2^(n*(n-1))*(2^n + 1) * Product[4^i - 1, {i, 1, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 07 2025 *)
  • Python
    from math import prod
    def A144545(n): return ((1<Chai Wah Wu, Jun 20 2022

Formula

a(n) ~ c * 2^(2*n^2-n), where c = A100221. - Amiram Eldar, Jul 07 2025