cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144618 Denominators of an asymptotic series for the factorial function (Stirling's formula with half-shift).

This page as a plain text file.
%I A144618 #19 Sep 23 2016 12:58:48
%S A144618 1,24,1152,414720,39813120,6688604160,4815794995200,115579079884800,
%T A144618 22191183337881600,263631258054033408000,88580102706155225088000,
%U A144618 27636992044320430227456000,39797268543821419527536640000
%N A144618 Denominators of an asymptotic series for the factorial function (Stirling's formula with half-shift).
%C A144618 From _Peter Luschny_, Feb 24 2011 (Start):
%C A144618 G_n = A182935(n)/A144618(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function.
%C A144618 The relationship between these coefficients and the Bernoulli numbers are due to De Moivre, 1730 (see Laurie). (End)
%C A144618 Also denominators of polynomials mentioned in A144617.
%C A144618 Also denominators of polynomials mentioned in A144622.
%H A144618 Chris Kormanyos, <a href="/A144618/b144618.txt">Table denominators of u_k for k=0..121</a>
%H A144618 Dirk Laurie, <a href="http://dip.sun.ac.za/~laurie/papers/computing_gamma.pdf">Old and new ways of computing the gamma function</a>, page 14, 2005.
%H A144618 Peter Luschny, <a href="http://www.luschny.de/math/factorial/approx/SimpleCases.html">Approximation Formulas for the Factorial Function.</a>
%H A144618 W. Wang, <a href="http://dx.doi.org/10.1016/j.jnt.2015.12.016">Unified approaches to the approximations of the gamma function</a>, J. Number Theory (2016).
%F A144618 z! ~ sqrt(2 Pi) (z+1/2)^(z+1/2) e^(-z-1/2)  Sum_{n>=0} G_n / (z+1/2)^n.
%F A144618 - _Peter Luschny_, Feb 24 2011
%e A144618 G_0 = 1, G_1 = -1/24, G_2 = 1/1152, G_3 = 1003/414720.
%p A144618 G := proc(n) option remember; local j,R;
%p A144618 R := seq(2*j,j=1..iquo(n+1,2));
%p A144618 `if`(n=0,1,add(bernoulli(j,1/2)*G(n-j+1)/(n*j),j=R)) end:
%p A144618 A144618 := n -> denom(G(n)); seq(A144618(i),i=0..12);
%p A144618 # _Peter Luschny_, Feb 24 2011
%t A144618 a[0] = 1; a[n_] := a[n] = Sum[ BernoulliB[j, 1/2]*a[n-j+1]/(n*j), {j, 2, n+1, 2}]; Table[a[n] // Denominator, {n, 0, 12}] (* _Jean-François Alcover_, Jul 26 2013, after Maple *)
%Y A144618 Cf. A001163, A001164, A182935, A144617, A144622.
%K A144618 nonn,frac
%O A144618 0,2
%A A144618 _N. J. A. Sloane_, Jan 15 2009, based on email from Chris Kormanyos (ckormanyos(AT)yahoo.com)
%E A144618 Added more terms up to polynomial number u_12, v_12 for the denominators of u_k, v_k. Christopher Kormanyos (ckormanyos(AT)yahoo.com), Jan 31 2009
%E A144618 Typo in definition corrected Aug 05 2010 by _N. J. A. Sloane_
%E A144618 A-number in definition corrected - _R. J. Mathar_, Aug 05 2010
%E A144618 Edited and new definition by Peter Luschny, Feb 24 2011