This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144630 #15 Sep 08 2022 08:45:38 %S A144630 1,12,4,180,12,9,2800,880,40,16,44100,46900,4480,40,25,698544,1615824, %T A144630 411264,13104,84,36,11099088,45094896,23653476,2268756,36036,84,49, %U A144630 176679360,1115345088,1017615456,207193536,9660816,79776,144,64 %N A144630 Triangle read by rows: T(n,k) (1 <= k <= n) is the sum of the entries in the lower right k X k submatrix of the n X n inverse Hilbert matrix. %C A144630 The initial entries in each row form A000515. The second entries give A144631. The final entries are the squares (A000290). %C A144630 Row sums are A144632. The penultimate entries in each row appear to be 4*A014105. - _N. J. A. Sloane_, Jan 20 2009 %H A144630 Klaus Brockhaus, <a href="/A144630/b144630.txt">Table of n, a(n) for n=1..1830 (rows 1 - 60)</a> %H A144630 Wikipedia, <a href="http://en.wikipedia.org/wiki/Hilbert_matrix">Hilbert matrix</a> (gives inverse Hilbert matric explicitly). %e A144630 The first three inverse Hilbert matrices are: %e A144630 -------------- %e A144630 [ 1 ] %e A144630 -------------- %e A144630 [4 -6 ] %e A144630 [-6 12] %e A144630 -------------- %e A144630 [ 9 -36 30 ] %e A144630 [-36 192 -180] %e A144630 [30 -180 180] %e A144630 -------------- %e A144630 Triangle begins: %e A144630 1, %e A144630 12, 4, %e A144630 180, 12, 9, %e A144630 2800, 880, 40, 16, %e A144630 44100, 46900, 4480, 40, 25, %e A144630 698544, 1615824, 411264, 13104, 84, 36 %p A144630 invH := proc(n,i,j) (-1)^(i+j)*(i+j-1)*binomial(n+i-1,n-j)*binomial(n+j-1,n-i)* (binomial(i+j-2,i-1))^2 ; end: A144630 := proc(n,k) local T,i,j ; T := 0 ; for i from n-k+1 to n do for j from n-k+1 to n do T := T+invH(n,i,j) ; od; od; RETURN(T) ; end: for n from 1 to 10 do for k from 1 to n do printf("%a,", A144630(n,k)) : od: od: # _R. J. Mathar_, Jan 21 2009 %t A144630 inverseHilbert[n_, i_, j_] := (-1)^(i+j)*(i+j-1) * Binomial[n+i-1, n-j] * Binomial[n+j-1, n-i] * Binomial[i+j-2, i-1]^2; inverseHilbert[n_, k_] := Table[ inverseHilbert[n, i, j], {i, n-k+1, n}, {j, n-k+1, n}]; t[n_, k_] := Tr[ Flatten[ inverseHilbert[n, k]]]; Flatten[ Table[t[n, k], {n, 1, 8}, {k, 1, n}]] (* _Jean-François Alcover_, Jul 16 2012 *) %o A144630 (MATLAB) invhilb(1), invhilb(2), invhilb(3), etc. %o A144630 (Magma) &cat[ [ &+[I[i][j]: i,j in [k..n] ]: k in [n..1 by -1] ] where I:=H^-1 where H:=Matrix(Rationals(), n, n, [ < i, j, 1/(i+j-1) >: i, j in [1..n] ] ): n in [1..8] ]; // _Klaus Brockhaus_, Jan 21 2009 %Y A144630 Cf. A000290, A000515, A144631. %K A144630 nonn,tabl %O A144630 1,2 %A A144630 Daniel McLaury and Ben Golub, Dec 23 2008 %E A144630 More terms from _R. J. Mathar_ and _Klaus Brockhaus_, Jan 21 2009