This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144635 #23 Jan 14 2025 10:20:34 %S A144635 1,7,41,225,1195,6227,32059,163727,831505,4206145,21215481,106782837, %T A144635 536618341,2693492305,13507578125,67693008145,339066121115, %U A144635 1697664211795,8497396194275,42522326235175,212749477704695,1064285646397915,5323532330953295,26625895085494075 %N A144635 a(n) = 5^n*Sum_{ k=0..n } binomial(2*k,k)/5^k. %F A144635 From _Vaclav Kotesovec_, Jun 12 2013: (Start) %F A144635 G.f.: 1/((1-5*x)*sqrt(1-4*x)). %F A144635 Recurrence: n*a(n) = (9*n-2)*a(n-1) - 10*(2*n-1)*a(n-2). %F A144635 a(n) ~ 5^(n+1/2). (End) %F A144635 a(n) = 5^(n+1/2) - 2^(n+1)*(2*n+1)!!*hypergeom([1,n+3/2], [n+2], 4/5)/(5*(n+1)!). - _Vladimir Reshetnikov_, Oct 14 2016 %F A144635 a(n) = Sum_{k=0..n} C(2*n+1,n-k)*A000032(2*k+1). - _Vladimir Kruchinin_ Jan 14 2025 %t A144635 Table[5^n Sum[Binomial[2k,k]/5^k,{k,0,n}],{n,0,30}] (* _Harvey P. Dale_, Aug 08 2011 *) %t A144635 Round@Table[5^(n + 1/2) - 2^(n + 1) (2 n + 1)!! Hypergeometric2F1[1, n + 3/2, n + 2, 4/5]/(5 (n + 1)!), {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - _Vladimir Reshetnikov_, Oct 14 2016 *) %o A144635 (PARI) a(n) = 5^n*sum(k=0, n, binomial(2*k,k)/5^k); \\ _Michel Marcus_, Oct 14 2016 %Y A144635 Cf. A000032, A006134, A082590, A132310, A002457. %K A144635 nonn %O A144635 0,2 %A A144635 _N. J. A. Sloane_, Jan 21 2009