cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144639 Column 4 of triangle in A144633.

This page as a plain text file.
%I A144639 #14 Mar 19 2014 11:28:13
%S A144639 0,0,0,0,1,-10,85,-700,5565,-39270,163625,2002000,-80455375,
%T A144639 1796144350,-33225267075,532997965500,-6863056074875,39757008541250,
%U A144639 1589961504756625,-87655679826715000,2971557080832965625,-82299265240798856250,1913986621864144953125
%N A144639 Column 4 of triangle in A144633.
%H A144639 Alois P. Heinz, <a href="/A144639/b144639.txt">Table of n, a(n) for n = 0..100</a>
%F A144639 E.g.f.: B(x)^4/24 where B(x) is e.g.f. for A144636. - _Vladeta Jovovic_, Jan 24 2009
%p A144639 A:= proc(n, k) option remember; if n=k then 1 elif k<n or n<1 then 0 else A(n-1, k-1) +(k-1) *A(n-1, k-2) +(k-1) *(k-2) *A(n-1, k-3)/2 fi end: M:= proc(n) option remember; Matrix(n+1, (i, j)-> A(i-1, j-1))^(-1) end: a:= n-> M(n+4)[5, n+1]: seq(a(n), n=0..25);  # _Alois P. Heinz_, Oct 25 2009
%t A144639 max = 30; t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; (0 <= k <= 3*n) := t[n, k] = t[n-1, k-1]+(k-1)*t[n-1, k-2]+(1/2)*(k-1)*(k-2)*t[n-1, k-3]; t[_, _] = 0; A144633 = Table[t[n, k], {n, 0, max}, {k, 0, max}] // Inverse // Transpose; a[n_] := A144633[[n+1, 5]]; Table[a[n], {n, 0, max}] (* _Jean-François Alcover_, Mar 19 2014 *)
%K A144639 sign
%O A144639 0,6
%A A144639 _N. J. A. Sloane_, Jan 23 2009
%E A144639 More terms from _Alois P. Heinz_, Oct 25 2009