This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144645 #21 Jun 09 2025 04:40:33 %S A144645 1,1,0,1,1,0,1,3,1,0,1,6,7,1,0,1,10,25,15,0,0,1,15,65,90,25,0,0,1,21, %T A144645 140,350,280,35,0,0,1,28,266,1050,1645,770,35,0,0,1,36,462,2646,6825, %U A144645 6930,1855,0,0,0,1,45,750,5880,22575,39795,26425,3675,0,0,0 %N A144645 Triangle in A144643 read upwards by columns. %H A144645 G. C. Greubel, <a href="/A144645/b144645.txt">Rows n = 0..50 of the triangle, flattened</a> %H A144645 Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, <a href="http://arxiv.org/abs/1701.08394">Analysis of the Gift Exchange Problem</a>, arXiv:1701.08394 [math.CO], 2017. %H A144645 David Applegate and N. J. A. Sloane, <a href="http://arxiv.org/abs/0907.0513">The Gift Exchange Problem</a>, arXiv:0907.0513 [math.CO], 2009. %F A144645 From _G. C. Greubel_, Oct 11 2023: (Start) %F A144645 T(n, k) = A144643(n-k, n). %F A144645 T(n, k) = A144644(n, n-k). %F A144645 T(n, k) = t(n-k, n), where t(n, k) = Sum_{j=0..3} binomial(k-1, j) * t(n-1, k-j-1), with t(n,n) = 1, t(n,k) = 0 if n < 1 or n > k. %F A144645 Sum_{k=0..n} T(n, k) = A001681(n). (End) %e A144645 Triangle begins: %e A144645 1; %e A144645 1, 0; %e A144645 1, 1, 0; %e A144645 1, 3, 1, 0; %e A144645 1, 6, 7, 1, 0; %e A144645 1, 10, 25, 15, 0, 0; %e A144645 1, 15, 65, 90, 25, 0, 0; %e A144645 1, 21, 140, 350, 280, 35, 0, 0; %e A144645 1, 28, 266, 1050, 1645, 770, 35, 0, 0; %e A144645 1, 36, 462, 2646, 6825, 6930, 1855, 0, 0, 0; %e A144645 1, 45, 750, 5880, 22575, 39795, 26425, 3675, 0, 0, 0; %t A144645 Table[BellY[n, n-k, {1,1,1,1}], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Oct 11 2023; based on A144644 *) %o A144645 (Magma) %o A144645 function t(n,k) %o A144645 if k eq n then return 1; %o A144645 elif k le n-1 or n le 0 then return 0; %o A144645 else return (&+[Binomial(k-1,j)*t(n-1,k-j-1): j in [0..3]]); %o A144645 end if; %o A144645 end function; %o A144645 A144645:= func< n,k | t(n-k,n) >; %o A144645 [A144645(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Oct 11 2023 %o A144645 (SageMath) %o A144645 @CachedFunction %o A144645 def t(n,k): %o A144645 if (k==n): return 1 %o A144645 elif (k<n or n<1): return 0 %o A144645 else: return sum(binomial(k-1,j)*t(n-1,k-j-1) for j in range(4)) %o A144645 def A144645(n,k): return t(n-k,n) %o A144645 flatten([[A144645(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Oct 11 2023 %Y A144645 Cf. A001681 (row sums), A144643, A144644. %K A144645 nonn,tabl %O A144645 0,8 %A A144645 _David Applegate_ and _N. J. A. Sloane_, Jan 25 2009