cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144649 Second bisection of A134772.

This page as a plain text file.
%I A144649 #12 Oct 21 2023 04:38:56
%S A144649 0,14400,134289792000,29865588836219136000,
%T A144649 64007711015400701105356800000,
%U A144649 799901135455942846519287494400000000000,42346525471797343063631567858734790430720000000000,7611746717262781749937067971966455935937523732684800000000000,3949387898792061570875758855816554982971495343701121923966566400000000000
%N A144649 Second bisection of A134772.
%H A144649 G. C. Greubel, <a href="/A144649/b144649.txt">Table of n, a(n) for n = 0..63</a>
%F A144649 a(n) = A134772(2*n+1). - _G. C. Greubel_, Oct 13 2023
%F A144649 a(n) ~ sqrt(Pi) * 2^(18*n + 11) * n^(8*n + 9/2) / (3^(2*n+1) * exp(8*n + 3/4)). - _Vaclav Kotesovec_, Oct 21 2023
%t A144649 A134772[n_]:= ((4*n)!/(24)^n)*Hypergeometric1F1[-n,1/2-2*n,-3/2];
%t A144649 A144549[n_]:= A134772[2*n+1];
%t A144649 Table[A144549[n], {n,0,20}] (* _G. C. Greubel_, Oct 13 2023 *)
%o A144649 (Magma)
%o A144649 B:=Binomial; F:=Factorial;
%o A144649 A134772:= func< n | F(4*n)/(24)^n *(&+[B(n, j)*B(2*n, j)*(-6)^j/(F(j)*B(2*j, j)*B(4*n, 2*j)) : j in [0..n]]) >;
%o A144649 A144649:= func< n | A134772(2*n+1) >;
%o A144649 [A144649(n): n in [0..20]]; // _G. C. Greubel_, Oct 13 2023
%o A144649 (SageMath)
%o A144649 def A134772(n): return (factorial(4*n)/(24)^n)* simplify(hypergeometric([-n], [1/2-2*n], -3/2))
%o A144649 def A144649(n): return A134772(2*n+1)
%o A144649 [A144649(n) for n in range(21)] # _G. C. Greubel_, Oct 13 2023
%Y A144649 Cf. A134772.
%K A144649 nonn
%O A144649 0,2
%A A144649 _N. J. A. Sloane_, Oct 18 2009