This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A144656 #35 Apr 05 2018 02:37:39 %S A144656 0,1,0,1,4,49,900,24649,944784,48455521,3210355600,267186643801, %T A144656 27307626948900,3363915436531441,491705171699154084, %U A144656 84158959760104032049,16675767262618669710400,3787671541267275818341249,977702867682508392324162624,284628954669920840314598014801 %N A144656 a(n) = (n mod 2) if n <= 3, otherwise a(n) = (n^2-5n+7)*(n-2)*a(n-1)/(n-3) + (n^2-5n+7)*a(n-2) - (n-2)*a(n-3)/(n-3). %C A144656 Terms are squares; square roots give A001053. %D A144656 M. E. Larsen, Summa Summarum, A. K. Peters, Wellesley, MA, 2007; see p. 35. %H A144656 S. B. Ekhad, <a href="http://www.jstor.org/stable/2325130">Problem 10356</a>, Amer. Math. Monthly, 101 (1994), 75. %p A144656 a:=proc(n) option remember; local m; %p A144656 if n=0 then RETURN(0); fi; %p A144656 if n=1 then RETURN(1); fi; %p A144656 if n=2 then RETURN(0); fi; %p A144656 if n=3 then RETURN(1); fi; %p A144656 m:=n-3; %p A144656 RETURN((m^2+m+1)*(m+1)*a(n-1)/m+(m^2+m+1)*a(n-2)-(m+1)*a(n-3)/m); %p A144656 end; %o A144656 (PARI) a=vector(10^3); for(n=1, 3, a[n]=n%2); for(n=4, #a, a[n] = (n^2-5*n+7)*(n-2)*a[n-1]/(n-3) + (n^2-5*n+7)*a[n-2] - (n-2)*a[n-3]/(n-3)); concat(0, a) \\ _Altug Alkan_, Apr 04 2018 %Y A144656 Cf. A001053. %K A144656 nonn %O A144656 0,5 %A A144656 _N. J. A. Sloane_, Jan 30 2009 %E A144656 Typo in name corrected by _Rogério Serôdio_, Apr 04 2018