cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144677 Related to enumeration of quantum states (see reference for precise definition).

This page as a plain text file.
%I A144677 #29 Sep 08 2022 08:45:38
%S A144677 1,2,3,6,9,12,18,24,30,40,50,60,75,90,105,126,147,168,196,224,252,288,
%T A144677 324,360,405,450,495,550,605,660,726,792,858,936,1014,1092,1183,1274,
%U A144677 1365,1470,1575,1680,1800,1920,2040,2176,2312,2448,2601,2754,2907,3078,3249,3420
%N A144677 Related to enumeration of quantum states (see reference for precise definition).
%C A144677 Equals (1, 2, 3, ...) convolved with (1, 0, 0, 2, 0, 0, 3, ...) = (1 + 2*x + 3*x^2 + ...) * (1 + 2*x^3 + 3*x^6 + ...). - _Gary W. Adamson_, Feb 23 2010
%C A144677 The Ca2 and Ze4 triangle sums, see A180662 for their definitions, of the Connell-Pol triangle A159797 are linear sums of shifted versions of the sequence given above, e.g., Ca2(n) = a(n-1) + 2*a(n-2) + 3*a(n-3) + a(n-4). - _Johannes W. Meijer_, May 20 2011
%H A144677 G. C. Greubel, <a href="/A144677/b144677.txt">Table of n, a(n) for n = 0..1000</a>
%H A144677 Brian O'Sullivan and Thomas Busch, <a href="http://arxiv.org/abs/0810.0231">Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas</a>, arXiv 0810.0231v1 [quant-ph], 2008. [Eq 10b, lambda=3]
%H A144677 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,2,-4,2,-1,2,-1).
%F A144677 From _Johannes W. Meijer_, May 20 2011: (Start)
%F A144677 a(n) = A190717(n-2) + A190717(n-1) + A190717(n).
%F A144677 a(n-2) + a(n-1) + a(n) = A014125(n).
%F A144677 G.f.: 1/((1-x)^4*(1+x+x^2)^2). (End)
%F A144677 From _Wesley Ivan Hurt_, Mar 28 2015: (Start)
%F A144677 a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8).
%F A144677 a(n) = ((2 + floor(n/3))^3 - floor((n+4)/3) + floor((n+4)/3)^3 - floor((n+5)/3) + floor((n+5)/3)^3 - floor((n+6)/3))/6. (End)
%F A144677 a(n) = Sum_{j=0..n} floor((j+3)/3)*floor((n-j+3)/3). - _G. C. Greubel_, Oct 18 2021
%p A144677 n:=80; lambda:=3; S10b:=[];
%p A144677 for ii from 0 to n do
%p A144677 x:=floor(ii/lambda);
%p A144677 snc:=1/6*(x+1)*(x+2)*(3*ii-2*x*lambda+3);
%p A144677 S10b:=[op(S10b),snc];
%p A144677 od:
%p A144677 S10b;
%p A144677 A144677 := proc(n) option remember; local k1; sum(A190717(n-k1),k1=0..2) end: A190717:= proc(n) option remember; A190717(n):= binomial(floor(n/3)+3,3) end: seq(A144677(n), n=0..53); # _Johannes W. Meijer_, May 20 2011
%t A144677 CoefficientList[Series[1/((x - 1)^4*(x^2 + x + 1)^2), {x, 0, 50}], x] (* _Wesley Ivan Hurt_, Mar 28 2015 *)
%t A144677 LinearRecurrence[{2, -1, 2, -4, 2, -1, 2, -1}, {1, 2, 3, 6, 9, 12, 18, 24}, 60 ] (* _Vincenzo Librandi_, Mar 28 2015 *)
%o A144677 (Magma) I:=[1,2,3,6,9,12,18,24]; [n le 8 select I[n] else 2*Self(n-1)-Self(n-2)+2*Self(n-3)-4*Self(n-4)+2*Self(n-5)-Self(n-6)+2*Self(n-7)-Self(n-8): n in [1..60]]; // _Vincenzo Librandi_, Mar 28 2015
%o A144677 (Sage)
%o A144677 @CachedFunction
%o A144677 def a(n): return sum( ((j+3)//3)*((n-j+3)//3) for j in (0..n) )
%o A144677 [a(n) for n in (0..60)] # _G. C. Greubel_, Oct 18 2021
%Y A144677 Cf. A006918, A144678, A144679.
%Y A144677 Cf. A000292, A190717. [_Johannes W. Meijer_, May 20 2011]
%K A144677 nonn,easy
%O A144677 0,2
%A A144677 _N. J. A. Sloane_, Feb 06 2009