cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144678 Related to enumeration of quantum states (see reference for precise definition).

This page as a plain text file.
%I A144678 #49 Sep 08 2022 08:45:38
%S A144678 1,2,3,4,7,10,13,16,22,28,34,40,50,60,70,80,95,110,125,140,161,182,
%T A144678 203,224,252,280,308,336,372,408,444,480,525,570,615,660,715,770,825,
%U A144678 880,946,1012,1078,1144,1222,1300,1378,1456,1547,1638,1729,1820,1925,2030,2135
%N A144678 Related to enumeration of quantum states (see reference for precise definition).
%C A144678 The Gi2 triangle sums of the triangle A159797 are linear sums of shifted versions of the sequence given above, i.e., Gi2(n) = a(n-1) + 2*a(n-2) + 2*a(n-3) + 3*a(n-4) + a(n-5). For the definitions of the Gi2 and other triangle sums see A180662. [_Johannes W. Meijer_, May 20 2011]
%C A144678 Partial sums of 1,1,1,1, 3,3,3,3, 6,6,6,6,..., the quadruplicated A000217. - _R. J. Mathar_, Aug 25 2013
%C A144678 Number of partitions of n into two different parts of size 4 and two different parts of size 1. a(4) = 7: 4, 4', 1111, 1111', 111'1', 11'1'1', 1'1'1'1'. - _Alois P. Heinz_, Dec 22 2021
%H A144678 G. C. Greubel, <a href="/A144678/b144678.txt">Table of n, a(n) for n = 0..1000</a>
%H A144678 Brian O'Sullivan and Thomas Busch, <a href="http://arxiv.org/abs/0810.0231">Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas</a>, arXiv 0810.0231v1 [quant-ph], 2008. [Eq 10b, lambda=4]
%H A144678 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,2,-4,2,0,-1,2,-1).
%F A144678 From _Johannes W. Meijer_, May 20 2011: (Start)
%F A144678 a(n) = A190718(n-3) + A190718(n-2) + A190718(n-1) + A190718(n).
%F A144678 a(n-3) + a(n-2) + a(n-1) + a(n) = A122046(n+3).
%F A144678 G.f.: 1/((x-1)^4*(x^3+x^2+x+1)^2). (End)
%F A144678 a(n) = A009531(n+5)/16 + (n+5)*(2*n^2+20*n+33+3*(-1)^n)/192 . - _R. J. Mathar_, Jun 20 2013
%F A144678 a(n) = Sum_{i=1..n+8} floor(i/4) * floor((n+8-i)/4). - _Wesley Ivan Hurt_, Jul 21 2014
%F A144678 From _Alois P. Heinz_, Dec 22 2021: (Start)
%F A144678 G.f.: 1/((1-x)*(1-x^4))^2.
%F A144678 a(n) = Sum_{j=0..floor(n/4)} (j+1)*(n-4*j+1). (End)
%p A144678 n:=80; lambda:=4; S10b:=[];
%p A144678 for ii from 0 to n do
%p A144678 x:=floor(ii/lambda);
%p A144678 snc:=1/6*(x+1)*(x+2)*(3*ii-2*x*lambda+3);
%p A144678 S10b:=[op(S10b),snc];
%p A144678 od:
%p A144678 S10b;
%p A144678 A144678 := proc(n) option remember;
%p A144678    local k;
%p A144678    sum(A190718(n-k),k=0..3)
%p A144678 end:
%p A144678 A190718:= proc(n)
%p A144678    binomial(floor(n/4)+3,3)
%p A144678 end:
%p A144678 seq(A144678(n),n=0..54); # _Johannes W. Meijer_, May 20 2011
%t A144678 a[n_] = (r = Mod[n, 4]; (4+n-r)(8+n-r)(3+n+2r)/96); Table[a[n], {n, 0, 54}] (* _Jean-François Alcover_, Sep 02 2011 *)
%t A144678 LinearRecurrence[{2,-1,0,2,-4,2,0,-1,2,-1}, {1,2,3,4,7,10,13,16,22,28}, 60] (* _G. C. Greubel_, Oct 18 2021 *)
%o A144678 (PARI) Vec(1/(x-1)^4/(x^3+x^2+x+1)^2+O(x^99)) \\ _Charles R Greathouse IV_, Jun 20 2013
%o A144678 (Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)*(1-x^4))^2 )); // _G. C. Greubel_, Oct 18 2021
%o A144678 (Sage)
%o A144678 def A144678_list(prec):
%o A144678     P.<x> = PowerSeriesRing(ZZ, prec)
%o A144678     return P( 1/((1-x)*(1-x^4))^2 ).list()
%o A144678 A144678_list(60) # _G. C. Greubel_, Oct 18 2021
%Y A144678 Cf. A000292, A006918, A144677, A144679, A190718.
%K A144678 nonn,easy
%O A144678 0,2
%A A144678 _N. J. A. Sloane_, Feb 06 2009